ЗАО «ЭСКО ЗЭ»

РЕГУЛЯТОР ПОТРЕБЛЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ ЭСКО-РТ-2Д

Руководство по эксплуатации

ЭСКО.23367.010.000-3 РЭ

Москва

		Страница
	Введение	3
1	Описание и работа	4
1.1	Описание и работа регулятора	4
1.1.1	Назначение	4
1.1.2	Характеристики	4
1.1.3	Состав регулятора	6
1.1.4	Устройство и работа регулятора	7
1.2	Описание составных частей регулятора	8
2	Монтаж и использование	8
2.1	Подготовка регулятора к использованию	8
2.2	Подготовка регулятора к работе	10
2.3	Демонтаж	10
2.4	Управление регулятором	10
2.5	Порядок работы	11
2.5.1	Описание алгоритма работы контура регулирования по схеме «ГВС»	12
2.5.2	Описание алгоритма работы контура регулирования по схеме «Отопление»	13
2.5.3	Описание алгоритма работы контура регулирования по схеме «Подпитка»	16
2.5.4	Алгоритм работы контура регулятора при нарушении нормального функциони- рования и обеспечении режима АВР насосов	17
2.6	Описание режимов главного меню регулятора	19
2.6.1	Описание режима «Служебный»	19
2.6.2	Описание режима «Выбор схемы»	19
2.6.3	Описание режима «Конфигурация»	20
2.6.4	Описание режима «Рабочий»	25
2.6.5	Работа в режиме ручного управления исполнительными устройствами	27
2.6.6	Описание режима время	28
2.7	Настойка параметров закона регулирования	29
2.8	Аварийный режим работы	33
3	Техническое обслуживание	33
4	Транспортирование и хранение	35
5	Гарантии изготовителя	35
	Приложение А Типовые схемы подключений регулятора	36
	Приложение Б Схемы электрические подключений	45
	Приложение В Габаритные и установочные размеры блока управления регулятора	48
	Приложение Г Габаритные и присоединительные размеры термодатчиков	49
	Приложение Д Порядок установки и корректировки графиков работы регулятора	50

СОДЕРЖАНИЕ

Настоящее руководство по эксплуатации (далее - РЭ) предназначено для изучения принципа действия и правил эксплуатации регулятора потребления тепловой энергии ЭСКО-РТ-2Д (далее – регулятор).

В РЭ приняты следующие сокращения и условные обозначения:

- П –пропорциональный закон регулирования;
- ПИ –пропорционально интегральный закон регулирования;
- ПИД –пропорционально-интегрально-дифференциальный закон регулирования;
- ПК –персональный компьютер;
- Тсм –температура смеси теплоносителя в подающем трубопроводе системы теплоснабжения после узла смешения;
- Тгв –температура горячей воды в системе ГВС;
- Тобр –температура теплоносителя в обратном трубопроводе;
- Тнар –температура наружного воздуха;
- Тконт –контрольная температура;

Изготовитель оставляет за собой право вносить в конструкцию и схему регулятора изменения непринципиального характера без отражения в РЭ.

ВНИМАНИЕ!

Перед установкой и пуском регулятора необходимо внимательно ознакомиться с настоящим РЭ и технической документацией на применяемые совместно с регулятором изделия (регулирующие клапаны, насосы и т.д.).

Изготовитель несет гарантийные обязательства в полном объеме только в том случае, если заводские пломбы на блоке управления регулятора не нарушены.

При установке регулятора на объекте эксплуатации в обязательном порядке должны быть выполнены следующие требования:

-монтаж электрических цепей должен быть выполнен в строгом соответствии со схемами электрических подключений, приведенными в РЭ.

-силовые и соединительные кабели должны быть проложены в заземленных металлических трубах или металлорукавах. При этом не допускается прокладка в одном металлорукаве (трубе) силовых кабелей и кабелей связи с термодатчиками.

-запрещается использование регулятора без герметичных кабельных вводов на шкафу управления, в котором он установлен, и исполнительных устройствах.

Изменение настроек регулятора возможно только после включения разрешения на изменение конфигурации в режиме «Служебный» главного меню регулятора.

1 ОПИСАНИЕ И РАБОТА

1.1 Описание и работа регулятора

1.1.1 Назначение

Регулятор предназначен для автоматического управления (регулирования) по заданному алгоритму процессом отпуска (потребления) тепловой энергии в системах отопления и горячего водоснабжения (далее - ГВС) и вентиляции.

Управление процессом отпуска (потребления) тепловой энергии может производиться (в зависимости от условий применения) как по одному, так и по двум независимым контурам регулирования.

Примечание– Контур регулирования включает в себя систему отопления, ГВС, подпитки или вентиляции, на которой установлен регулятор. Особенности применения регулятора в системах вентиляции подробно рассмотрены во второй части настоящего РЭ.

Область применения: системы отопления, ГВС и вентиляции объектов промышленного и бытового назначения.

Типовые схемы (кроме вентиляции), в соответствии, с которыми может функционировать регулятор, приведены в приложении А.

Регулятор имеет стандартный последовательные интерфейс RS-485, через который в режиме удаленного доступа можно задавать и считывать параметры регулирования и текущие значения измеряемых величин, а также производить необходимые настройки с ПК.

1.1.2 Характеристики

1.1.2.1 Каждый из контуров регулирования в зависимости от условий применения на объекте эксплуатации может свободно конфигурироваться в соответствии с таблицей 1.

Таблица 1

Контур 1	Контур 2
ГВС (рисунок А.1)	ГВС (рисунок А.1)
Отопление (рисунки А.2-А.6)	Отопление (рисунки А.2-А.6)
_	Подпитка (рисунок А.7)

В случае необходимости управление может осуществляться только по одному контуру регулирования.

1.1.2.2 Регулятор в процессе функционирования обеспечивает:

- задание режима регулирования потребления тепловой энергии по каждому из контуров;

 – автоматическое поддержание заданного режима регулирования в подающем трубопроводе системы отопления объекта после узла смешения;

–автоматическое поддержание заданного режима регулирования в обратном трубопроводе (ГВС и отопление) с целью предотвращения превышения температурой теплоносителя установленного предельного значения, или её ограничения в соответствии с заданным температурным графиком;

- автоматическое поддержание заданного температурного режима в системе ГВС;

- автоматическое поддержание температурного режима в системе вентиляции;

- управление исполнительными устройствами (регулирующими клапанами и насосами);

– в зависимости от режима работы контроль температуры (воды в системе ГВС, теплоносителя в подающем трубопроводе теплосети объекта после узла смешения, теплоносителя в обратном трубопроводе теплоносителя объекта, наружного воздуха, воздуха контрольного помещения объекта теплоснабжения;

- контроль и поддержание рабочего давления в контуре подпитки;

– контроль состояния циркуляционных, подмешивающих и повысительных насосов, в случае их применения в схемах регулирования;

- аварийный ввод резерва насосов (режим ABP);

- защиту насосов от «сухого хода».

Примечание– Датчик контрольной температуры (смотри рисунки А.2–А.6) используется как вспомогательный и его отсутствие учитывается регулятором автоматически. Датчики температуры теплоносителя в обратном трубопроводе, наружного воздуха и контрольной температуры (смотри рисунок А.1) могут не использоваться. Их отсутствие учитывается регулятором автоматически.

1.1.2.3 Регулятор обеспечивает индикацию:

- значений фактических и расчетных температур в контуре регулирования;
- отсутствия или неисправности термодатчиков;
- значений температурных уставок;
- параметров закона регулирования;
- текущего времени;

- включения исполнительных механизмов;

- аварийных ситуаций в соответствии с алгоритмом работы.

1.1.2.4 Значения информационных, измеренных и установленных параметров индицируются на двухстрочном цифробуквенном жидкокристаллическом индикаторе (далее – ЖКИ), установленном на лицевой панели блока управления. Выбор индицируемых параметров производится нажатием кнопок клавиатуры. ЖКИ имеет подсветку.

1.1.2.5 Максимальное количество подключаемых регулирующих клапанов– 2 шт. (по одному на каждый контур регулирования).

1.1.2.6 Управление регулятором исполнительными устройствами в зависимости от типов применяемых электроприводов может осуществляться:

–подачей-снятием питающего напряжения переменного (или постоянного) тока (релейное управление);

- изменением сигналов управления 0-10 В (аналоговое управление);

-изменением сигналов управления 4-20 мА (аналоговое управление), при этом используется преобразователь напряжение-ток, подключаемый к выходу 0-10 В и поставляемый по отдельному заказу.

Примечание– Регуляторы поставляются потребителю только в одном из вариантов исполнения по типу управления регулирующими клапанами: релейное или аналоговое. Тип управления при заказе оговаривается отдельно.

1.1.2.7 Максимальное количество подключаемых насосов – 4 шт. (по два на каждый контур).

1.1.2.8 Регулятор обеспечивает для каждого контура регулирования:

-раздельное управление двумя (основным и резервным) насосами;

-возможность управления насосами с резервированием по времени;

-аварийное включение резервного насоса (ABP).

1.1.2.9 Максимальное количество подключаемых внешних контактных датчиков состояния «замкнуто/разомкнуто» – 6 шт.

Примечание – Состояние контактов внешних датчиков (нормально замкнутые или нормально разомкнутые) выбирается потребителем и задается с клавиатуры.

1.1.2.10 Максимальное количество подключаемых термодатчиков – 8 шт. (по четыре на каждый контур регулирования).

1.1.2.11 Диапазон контролируемых температур зависит от типа применяемых термодатчиков и находится в пределах:

- от минус 50 до плюс 125 °C при использовании цифровых термодатчиков РТ-1;

- от минус 50 до плюс 150 °C при использовании термометров сопротивления платиновых (ТСП).

Примечание– Регуляторы поставляются потребителю в одном из вариантов исполнения по типу применяемых термодатчиков: с цифровыми термодатчиками или с ТСП. Тип применяемых термодатчиков при заказе оговаривается отдельно. В комплект поставки регуляторов с цифровыми термодатчиками (в случае необходимости) по

индивидуальному заказу могут включаться модули сопряжения MC-1, предназначенные для подключения TCII к цифровым входам. Один модуль, предназначается для подключения одного TCII, и устанавливается в непосредственной близости от блока управления регулятора. Схема электрических подключений приведена в РЭ на модуль сопряжения MC-1.

1.1.2.12 Максимальная длина соединительных линий между блоком управления соответствующего исполнения и термодатчиками не более:

-для цифровых термодатчиков- 50м;

-для ТСП (Pt 500)- 100м.

-для ТСП (Pt 1000)- 200м.

Примечание- Тип применяемых ТСП (Pt 500 или Pt 1000) уточняется при заказе.

1.1.2.13 Схема подключения термодатчиков к блоку управления:

-для цифровых термодатчиков- трёхпроводная (смотри схемы электрические подключений в приложении Б), подключение должно осуществляться кабелем КММ 2×0,35 или аналогичным;

– для ТСП (Pt 500 или Pt 1000)– двухпроводная, подключение должно осуществляться кабелем КВВГЭ или МКЭШ (или аналогичным) сечением не менее: 0,35мм² (если длина линии связи не более 50м), 0,5мм² (если длина линии связи от 50 до 100м) и 1,0мм² (если длина линии связи от 100 до 200м).

1.1.2.14 Схема подключения ТСП к модулю сопряжения МС-1:

-четырёхпроводная для Pt 100 (при длине соединительных линий не более 50м);

-четырёхпроводная или двухпроводная для Pt 500 и Pt 1000.

1.1.2.15 Длина линии связи по интерфейсу RS-485 (при использовании в качестве среды обмена неэкранированной витой пары на основе провода МГШВ 0,35) не более 1200 м.

1.1.2.16 Скорость обмена информацией по интерфейсу RS-485 в зависимости от предъявляемых требований может изменяться в пределах от 9600 до 115200 бод.

1.1.2.17 Емкость статистических архивов составляет 480 записей, интервал записи выбирается из ряда 1, 5, 10, 30, 60 мин. По индивидуальному заказу ёмкость архивов может быть увеличена до 2000 записей.

1.1.2.18 Режим работы регулятора – непрерывный.

1.1.2.19 Напряжение питания – от 195 до 253В, 50 Гц.

1.1.2.20 Потребляемая мощность - не более 5 ВА (без учета исполнительных механизмов).

1.1.2.21 Максимальный ток нагрузки (по каждому из выходов на исполнительные механизмы) – 3 А.

1.1.2.22 Габаритные размеры блока управления, не более: 160х91х58 мм. Внешний вид приведён в приложении В.

1.1.2.23 Способ крепления корпуса – DIN-рейка.

1.1.2.24 Условия эксплуатации:

- температура окружающего воздуха от плюс 5 до плюс 50 °C;

- относительная влажность воздуха до 95% при температуре 30 °C;

- атмосферное давление от 84 до 106,7 кПа.

1.1.2.25 Степень защиты корпуса по ГОСТ 14254 - ІР20.

1.1.2.26 По способу защиты от поражения электрическим током регулятор относится к классу II по ГОСТ 12.2.007.0.

1.1.3 Состав регулятора

Регулятор представляет собой изделие, состоящее из отдельных конструктивно за-конченных составных частей:

- блока управления;

- комплекта цифровых термодатчиков.

Исполнительные устройства не входят в комплект регулятора и поставляются отдельно.

В случае необходимости по индивидуальному заказу поставляются модули сопряжения MC-1, MC-2 и MC-3. Модуль MC-1 предназначен для подключения TCП к соответствующему температурному входу в регуляторе с цифровыми термодатчиками. Модуль MC-2 предназначен для подключения к регулятору выхода 4-20 мА цифрового датчика давления. Модуль MC-3 представляет собой преобразователь напряжение-ток и предназначен для подключения к выходу 0-10 В регулятора электропривода регулирующего клапана с сигналом управления 4-20 мА.

Примечание – ТСП для применения в составе регулятора могут приобретаться потребителем индивидуально при условии соответствия их требованиям п.п. 1.1.2.11 – 1.1.2.14.

1.1.4 Устройство и работа регулятора

1.1.4.1 Принцип действия регулятора основан на измерениях значений контролируемых температур и давлений, сравнении их значений с заданными уставками, и выдаче управляющего воздействия на исполнительные устройства. В зависимости от заданных параметров регулирования управление осуществляется по П, ПИ или ПИД– закону.

Регулятор поставляется потребителю с предварительными заводскими настройками параметров регулирования для каждой из реализуемых схем работы.

Конкретная схема работы для каждого из контуров регулирования (смотри таблицу 1) конфигурируется на объекте эксплуатации, а параметры регулирования уточняются в процессе наладки с учётом специфики объекта и применяемого оборудования.

1.1.4.2 Измерения значений контролируемых температур выполняются с помощью термодатчиков, которые преобразуют данные значения в цифровые коды.

1.1.4.3 Далее закодированные значения контролируемых температур по линиям связи поступают на соответствующие входы блока управления, в котором производится их сравнение с заданными температурными уставками или расчетными значениями.

Примечание– При использовании ТСП подключение к соответствующему цифровому входу блока управления выполняется через модуль сопряжения MC-1, который преобразует аналоговый выходной сигнал, снимаемый с ТСП, в цифровой код.

1.1.4.4 Регулятор по результатам сравнения значений контролируемых температур с расчетными значениями или температурными уставками (в соответствии с заданными законом регулирования и его параметрами) вырабатывает управляющее воздействие на исполнительные устройства.

1.1.4.5 Управляющее воздействие представляет собой коммутацию (подачу) сетевого питающего напряжения на исполнительное устройство на время, вычисленное регулятором по комплексу параметров. В случае применения на регулирующих клапанах электрических приводов с аналоговым управлением управляющим воздействием на привод является сигнал 0-10 В, величина которого пропорциональна вычисленному значению перемещения штока клапана.

1.1.4.6 При работе второго контура регулирования по схеме «Подпитка» управляющие воздействия на регулирующий клапан и повысительные насосы (если они используются) вырабатываются по результатам измерений давления воды в контрольных точках линии подпитки (смотри рисунок А.7).

1.1.4.7 В случае, если в схеме контура регулирования предусмотрено использование циркуляционных, подмешивающих или повысительных насосов в соответствии с заданным алгоритмом регулятор может обеспечивать:

-контроль состояния насосов и анализ аварийных ситуаций;

-защиту насосов от «сухого хода»;

-раздельное управление двумя (основным и резервным) насосами;

-возможность управления насосами с резервированием по времени;

-аварийное включение резервного насоса (ABP).

Для подключения контактных датчиков контроля насосов (ДКН) и датчиков контроля «сухого хода» (ДКС) в блоке управления предусмотрены соответствующие входы (смотри схему электрических подключений в приложении Б).

Внимание! В случае использования ДКС, при их срабатывании происходит безусловное отключение работающих насосов в соответствующих контурах регулирования или блокировка их включения (если насосы в данный момент не были включены).

1.2 Описание составных частей регулятора

1.2.1 Описание блока управления

Блок управления регулятора представляет собой промышленный контроллер с резидентным программным обеспечением (далее-ПО). Внешний вид блока управления и его габаритные размеры приведены в приложении В. На объектах эксплуатации блоки управления устанавливаются в шкафах автоматики с помощью DIN-рейки. Подключение кабеля питания, исполнительных механизмов, термодатчиков, контактных датчиков и другого переферийного оборудования выполняется с помощью винтовых клеммников, расположенных в верхней и нижней части корпуса. После выполнения подключений клеммники закрываются заглушками, препятствующими несанкционированному прикосновению к ним в процессе работы регулятора.

На передней панели блока управления (смотри рисунок В.1) размещены: ЖКИ, кнопки управления регулятором и светодиодные индикаторы «Работа» и «Авария». Индикатор «Работа» с зелёным мигающим свечением, сигнализирует о том, что на блок управления подано питающее напряжение. Индикатор «Авария» с красным свечением сигнализирует о возникновении нештатных ситуаций (ошибок) в процессе работы регулятора, например, таких, как неисправность одного из термодатчиков, срабатывание одного из ДКН или ДКС и т.д.

1.2.2 Описание термодатчиков

Внешний вид и варианты монтажа применяемых в составе регулятора цифровых термодатчиков приведены в приложении Г.

Конструктивно термодатчик представляет собой микросхему (преобразователь температура–цифровой код), помещенную в гильзу из латуни или нержавеющей стали. Выводы микросхемы через проводники печатной платы, также помещенной в гильзу, соединены с контактами клеммника, размещенного в верхней части термодатчика, и предназначены для подключения проводов линии связи с блоком управления. Внутренняя часть гильзы залита защитным компаундом. Схемы электрические подключений приведены на рисунках Б.1 и Б.2, а порядок установки термодатчиков в зависимости от схемы работы приведён в таблице Б.1 приложения Б.

1.2.3 Маркировка и пломбирование.

1.2.3.1 Маркировка сохраняется в течение всего срока службы регулятора.

1.2.3.2 На корпусе блока управления регулятора имеется паспортная табличка, на которой указывается:

-порядковый номер блока по системе нумерации изготовителя;

- год выпуска.

1.2.3.3 Пломбирование изделия производится с помощью саморазрушающейся пломбы-наклейки, препятствующей несанкционированному вскрытию корпуса.

1.2.3.4 Тара регулятора маркируется в соответствии с ГОСТ 14192-96.

2 МОНТАЖ И ИСПОЛЬЗОВАНИЕ

2.1 Подготовка регулятора к использованию

2.1.1 Распаковка

При получении регулятора необходимо проверить сохранность тары. В зимнее время тару можно вскрывать только после выдержки ее в течение 6 часов в теплом помещении. После вскрытия тары необходимо освободить элементы регулятора от упаковочных мате-

риалов и протереть. Затем необходимо проверить соответствие комплектности регулятора той, которая указана в паспорте.

2.1.2 Монтаж регулятора

2.1.2.1 Общие требования

Условия эксплуатации регулятора должны находится в строгом соответствии с требованиями, изложенными в введении и п. 1.1.2.24 настоящего РЭ.

Монтаж регулятора должен проводиться в строгом соответствии с требованиями настоящего РЭ и утвержденного проекта установки персоналом, ознакомленным с эксплуатационной документацией на изделие.

Внимание! В связи с тем, что корпус блока управления обеспечивает степень защиты IP 20 по ГОСТ 14254, проектной документацией должно быть предусмотрено его размещение на объекте эксплуатации в дополнительном защитном боксе или шкафу управления со степенью защиты не ниже IP 54.

2.1.2.2 Порядок установки регулятора

Установку регулятора необходимо проводить в следующей последовательности:

- установить в месте, предусмотренном проектной документацией, блок управления;

- установить в местах, предусмотренных проектной документацией, термодатчики;

- установить в соответствии с требованиями эксплуатационных документов в местах, предусмотренных проектной документацией, исполнительные устройства (клапаны, насосы);

- подключить термодатчики, исполнительные устройства и кабель питания к блоку управления согласно схемам электрическим подключений (смотри приложение Б).

Подключение блока управления регулятора к питающей электрической сети, исполнительным устройствам, термодатчикам должно выполняться кабелем с площадью сечения не менее 0,35мм². Все кабели должны быть уплотнены в герметичных вводах шкафа управления (защитного бокса) и исполнительных устройств.

Подключение регулятора к электрической сети должно выполняться только через автоматический выключатель с током защиты, строго соответствующим требованиям проектной документации.

Внимание! Если в составе регулятора используются исполнительные устройства с потребляемым током более 3А, то коммутация цепей питания клапанов и насосов должна выполняться внешними устройствами.

Примечание– Если блок управления регулятора поставляется потребителю в составе шкафа управления, то монтаж выполняется в соответствии с требованиями эксплуатационной документации на это изделие.

2.1.2.3 Порядок установки термодатчиков

Способы установки термодатчиков приведены на рисунках приложения Г.

При установке термодатчика на трубопроводе необходимо выполнить следующую последовательность операций:

1) В месте установки термодатчика в верхней образующей трубопровода высверлить отверстие требуемого диаметра (смотри приложение Г);

2) Приварить к трубопроводу гайку так, чтобы центры отверстий в гайке и трубопроводе совпадали;

3) Ввернуть в приваренную к трубопроводу гайку корпус (гильзу) термодатчика.

Примечание – Запрещается приваривать корпуса термодатчиков к трубопроводам и к крепежным элементам.

2.2 Подготовка регулятора к работе

2.2.1 К работе допускаются регуляторы, не имеющие механических повреждений и нарушений пломб и подготовленные к работе в соответствии с требованиями настоящего раздела.

Перед началом работы необходимо:

– проверить правильность монтажа электрических цепей в соответствии со схемами электрических подключений, приведенными на рисунках приложения Б;

- провести контроль состояния уплотнений на герметичных кабельных вводах;

– на всех исполнительных устройствах плотно закрыть крышки узлов коммутации и клеммных коробок для предотвращения попадания в них воды.

Далее следует под рабочим давлением проверить герметичность соединений термодатчиков и исполнительных устройств с трубопроводами. Течи и просачивания не допускаются.

2.2.2 После выполнения требований п.2.2.1 необходимо включить питание регулятора и провести проверку его работоспособности и настройку в порядке изложенном в п.п. 2.5 и 2.6.

2.3 Демонтаж регулятора

Демонтаж регулятора следует проводить в следующем порядке:

- отключить напряжение питания регулятора;

– отсоединить кабели связи блока управления с термодатчиками и исполнительными устройствами;

– снять блок управления;

- в случае демонтажа термодатчиков:

- перекрыть расход теплоносителя или горячей воды в месте установки датчика;

- убедиться в отсутствии избыточного давления воды и снять датчик;

- вместо термодатчика установить заглушку.

Демонтаж исполнительных устройств необходимо проводить в порядке, изложенном в их эксплуатационной документации.

2.4 Управление регулятором

2.4.1 Описание элементов индикации, расположенных на лицевой панели блока управления, приведено в п.1.2.1.

2.4.2 Структура главного пользовательского меню регулятора приведена на рисунке 1.

Управление регулятором при настройке и просмотре выводимой на ЖКИ блока управления информации осуществляется с помощью четырех кнопок, расположенных на лицевой панели (смотри рисунок В.1 приложения В).

Кнопки управления имеют следующее функциональное назначение:

 горизонтальные переходы из режима в режим главного меню регулятора и уменьшение корректируемого параметра (или выбор требуемого режима работы);

▶ – горизонтальные переходы из режима в режим главного меню регулятора и увеличение корректируемого параметра (или выбор требуемого режима работы);

▼ – вертикальные переходы из одного пункта в другой в каждом из режимов главного меню регулятора;

▲ – безусловный переход в главное меню регулятора независимо от того, в каком пункте выбранного режима этого меню находился пользователь.

Примечание– Переходы по вертикали между пунктами в любом из режимов главного меню закольцованы.

После включения питания регулятора блок управления проводит самодиагностику, которая длится около 5 секунд, при этом в верхней строке ЖКИ отображается слово «Тестирование». После завершения этой процедуры на ЖКИ выводится информация о текущем состоянии контуров регулирования. При этом информация о состоянии первого кон-

тура отображается в верхней строке, а о состоянии второго контура – в нижней. Внешний вид окна состояния контуров представлен на рисунке 1.

1 К: Закр	H1	!				
2 К: Откр	H1	H2	Е			

Рисунок 1

Цифра 1, выводимая на ЖКИ, означает, что информация, приведенная в строке, соответствует контуру 1. Регулирующий клапан в этом контуре работает на закрывание, насос Н1 находится во включённом состоянии, отсутствие символа «Е» (Error) в конце строки говорит о нормальном состоянии контура (отсутствии ошибок функционирования). Символ «!» означает, что один или несколько температурных параметров, по которым осуществляется контроль и поддержание на требуемом уровне, в данный момент времени имеют отклонение от установленного значения, и регулятор осуществляет управление контуром для устранения рассогласования. После достижения регулируемым параметром требуемого значения символ «!» исчезает.

Цифра 2, означает, что информация, приведенная в строке, соответствует контуру 2. Регулирующий клапан в этом контуре открывается, насосы H1 и H2 находятся во включённом состоянии, символ «Е» означает наличие ошибки в функционировании контура.

Если клапан в одном из контуров находится в состоянии покоя, то в соответствующем поле строки состояния информация отсутствует.

Если в контурах регулирования применяются клапаны с аналоговым управлением, то вместо символов «Откр», «Закр» (или их отсутствия в состоянии покоя), выводятся данные о положении штока клапана в процентах от диапазона хода. Например: «10%» означает, что в данный момент времени клапан открыт на 10 %.

Переход из окна состояния контуров в главное меню регулятора выполняется при нажатии на любую из четырёх кнопок управления. Обратный переход выполняется нажатием кнопки ^ . Структура главного меню регулятора приведена на рисунке 2.

Рисунок 2

Цифра 1, выводимая на ЖКИ, означает, что данный режим главного меню относится к первому контуру регулирования. Если на индикатор выводится цифра 2, то этот режим главного меню относится ко второму контуру регулирования. Если цифры 1 или 2 отсутствуют, то данный режим главного меню является общим для обоих контуров регулирования. Описания всех режимов главного меню приведены в п.2.6.

2.5 Порядок работы

2.5.1 Описание алгоритма работы контура регулирования по схеме «ГВС»

2.5.1.1 В общем виде схемы подключений контура регулятора, для которого выбрана схема работы «ГВС», приведены на рисунке А.1 (приложение А). При этом на рисунке А.1(а) приведена схема с минимальным набором оборудования, позволяющим реализовать поддержание требуемой температуры горячей воды Тгв, а на рисунке А.1(б) приведена схема с максимальным набором оборудования. Датчики контроля насосов (ДКН) и датчики сухого хода (ДКС), которые в случае необходимости подключаются к соответствующим входам блока управления (смотри рисунок Б.1 приложения Б) на схеме не указаны. Внимание! В случае использования ДКС, при их срабатывании происходит безусловное отключение работающих насосов в соответствующем контуре регулирования или блокировка их включения (если насосы в данный момент не работают).

Примечание– Следует иметь в виду, что наилучшего качества регулирования можно добиться при использовании высокоскоростных теплообменников в схемах ГВС с принудительной циркуляцией. И наоборот, качество регулирования, как правило, низкое, если используется тупиковая схема (без циркуляции) и скоростные характеристики теплообменника не отвечают требованиям оптимизации процесса теплообмена.

При работе по схеме «ГВС» блок управления регулятора по результатам измерений температур Тгв и Тобр вырабатывает управляющее воздействие на регулирующий клапан, который изменяет расход теплоносителя, поступающего в теплообменник для нагрева горячей воды.

Целью этого воздействия является:

а) поддержание заданной температуры Тгв в системе ГВС;

б) ограничение температуры теплоносителя Тобр в обратном трубопроводе заданным значением Тобр_{тах}, т.е. выполнение условия Тобр≤ Тобр_{тах} (Тобр_{тах}-температурная уставка по Тобр).

Если наряду с термодатчиком Тобр в схеме контура регулирования применяется термодатчик температуры наружного воздуха Тнар, то дополнительно к контролю выполнения условия Тобр≤ Тобр_{тах} регулятор (при соответствующих настройках) может обеспечивать ограничение Тобр в соответствии с заданным температурным графиком.

2.5.1.2 Если термодатчик, измеряющий температуру в обратном трубопроводе, не устанавливается, то регулятор вырабатывает управляющее воздействие на клапан только с целью поддержания заданной температуры Тгв.

При этом управляющее воздействие вырабатывается по ПИД-закону.

2.5.1.3 Если термодатчик, измеряющий температуру Тобр установлен, то в случае Тобр≤ Тобр_{тах} (Тобр_{тах}-температурная уставка по Тобр), управляющее воздействие вырабатывается аналогично п.2.5.1.2.

Если Тобр_{тах} <Тобр, то регулятор вырабатывает сигнал управления, закрывающий клапан (вплоть до полного закрытия) до тех пор пока не будет выполнено условие Тобр≤ Тобр_{тах}.

2.5.1.4 Если наряду с Тобр установлен датчик Тнар и включен режим контроля «Контроль обр.: производится» (смотри п. 2.6.3.1), то в случае выполнения условий Тобр≤ Тобр_{тах}≤Тобр_{расч} или Тобр≤ Тобр_{расч}≤ Тобр_{расч}≤ Тобр_{тах}, управляющее воздействие вырабатывается аналогично п.2.5.1.2.

Примечание— Тобр_{расч}— расчетное значение температуры теплоносителя в обратном трубопроводе системы отопления, соответствующее типовому температурному графику качественного регулирования 105/70 или 95/70 °C для текущего значения Тнар.

Если Тобр_{расч}≤Тобр_{тах} <Тобр, то регулятор вырабатывает сигнал управления, закрывающий клапан до тех пор пока не будет выполнено условие Тобр≤ Тобр_{расч}.

Если Тобр_{тах} ≤ Тобр_{расч} <Тобр, то регулятор вырабатывает сигнал управления, закрывающий клапан до тех пор пока не будет выполнено условие Тобр≤ Тобр_{тах}.

Если режим контроля выключен «Контроль обр.: не производится» (смотри п. 2.6.3.1), то контур регулирования работает по алгоритму п. 2.5.1.2 или п. 2.5.1.3.

2.5.1.5 При схеме работы «ГВС» регулятор может осуществлять регулирование в одном из трёх режимов:

Режим 1- Регулирование вручную;

Режим 2- Регулирование по заданной фиксированной температуре Тгв;

Режим 3– Регулирование по заданному графику температур для каждого часа каждого дня недели (понижения температуры и отключения ГВС для ночного времени и выходных дней).

2.5.1.6 При реализации схемы с максимальным набором оборудования регулятор выполняет:

 раздельное управление двумя циркуляционными насосами с возможностью резервирования по времени;

контроль (проверка на наличие или отсутствие аварийной ситуации) функционирования системы регулирования по давлению;

-контроль (проверка на наличие или отсутствие аварийной ситуации) функционирования системы регулирования по температуре;

-контроль (проверка на наличие или отсутствие аварийной ситуации) функционирования системы регулирования по температуре и давлению;

- защиту насосов от «сухого хода».

2.5.1.7 Блок управления отображает в соответствующем меню ошибку в функционировании контура регулирования в следующих случаях:

-неисправность основного канала измерений температуры (Тгв);

-срабатывание ДКС;

-нарушение нормального функционирования контура регулирования (возникновение «запрограммированных событий» по давлению Р или по температуре Т).

При этом, в случае выхода из строя температурного канала Тгв или срабатывания ДКС возникшая ошибка сразу отображается на ЖКИ, а красный светодиод «Авария» переводится в состояние свечения. При возникновении «запрограммированных событий» нарушения нормального функционирования контура регулирования индикация ошибки и включение светодиода «Авария» происходит в соответствии с установленным алгоритмом через запрограммированные интервалы времени. Алгоритм работы регулятора при возникновении «запрограммированных событий» нарушения нормального функционирования и обеспечении режима АВР насосов подробно рассмотрен в п. 2.5.4.

2.5.2 Описание алгоритма работы контура регулирования по схеме «Отопление»

2.5.2.1 В общем виде варианты подключений контуров регулятора при работе по схеме «Отопление» приведены на рисунках А.2–А.6:

-рисунок А.2: вариант с двухходовым регулирующим клапаном и подмешивающим насосом;

–рисунок А.3: вариант с трёхходовым регулирующим клапаном и подмешивающим насосом;
–рисунок А.4: вариант с регулирующим клапаном и циркуляционным насосом в независимом контуре отопления;

-рисунок А.5: вариант с двухходовым клапаном и циркуляционным насосом в зависимом контуре отопления;

-рисунок А.6: вариант с трёхходовым клапаном и циркуляционным насосом в зависимом контуре отопления.

При этом на рисунках A.2(a)-A.6(a) приведены схемы с минимальным набором оборудования, позволяющим реализовать простейший алгоритм регулирования, а на рисунках A.2(б)-A.6(б) приведены схемы с максимальным набором оборудования. Датчики контроля насосов (ДКН) и датчики сухого хода (ДКС), которые в случае необходимости подключаются к соответствующим входам блока управления (смотри рисунок Б.1 приложения Б) на схеме не указаны. Внимание! В случае использования ДКС, при их срабатывании происходит безусловное отключение работающих насосов в соответствующем контуре регулирования или блокировка их включения (если насосы в данный момент не работают).

При работе по схеме «Отопление» производится регулирование температуры теплоносителя в подающем трубопроводе после узла смешения или на выходе теплообменника (рисунок А.4) Тсм в зависимости от температуры наружного воздуха Тнар и температуры теплоносителя в обратном трубопроводе Тобр.

В процессе регулирования учитываются изменения условий потребления тепловой энергии объектом, на котором установлен регулятор. Изменения данных условий могут быть вызваны, например, природными факторами (изменение направления ветра, солнечный подогрев стен зданий), а также изменением условий эксплуатации (например, проветривание помещений).

Термодатчик контрольной температуры Тк может устанавливаться:

- в наиболее холодных помещениях;

 – на участках отопительных систем, где наиболее велика вероятность размораживания батарей или трубопроводов;

-перед узлом смешения или на входе теплообменника, как показано на рисунках А.2(б)-А.6(б) для реализации алгоритмов «контроль насосов по температуре» и «контроль насосов по температуре и давлению» (смотри п. 2.5.4)

2.5.2.2 Регулирование по схеме «Отопление» производится по следующему алгоритму.

Блок управления регулятора по результатам измерений температур наружного воздуха Тнар и теплоносителя в обратном трубопроводе Тобр производит:

1) Вычисление расчетной температуры смеси теплоносителя Тсм.

2) По ПИД-закону регулирования вырабатывает управляющее воздействие на клапан. При этом:

а) если термодатчик, измеряющий контрольную температуру Тк, не устанавливается, то блок управления вырабатывает управляющее воздействие на клапан только с целью реализации ПИД- закона регулирования;

б) если термодатчик, измеряющий температуру Тк установлен, то в случае Тк≥ Тк_{тіп}, управляющее воздействие вырабатывается аналогично п. а);

в) Если, Тк<Тк_{min} то регулятор вырабатывает сигнал управления, открывающий клапан (вплоть до полного открытия) до тех пор пока не будет выполнено условие Тк≥ Тк_{min}.

Расчетные значения температуры Т_{см} вычисляются блоком управления с использованием графиков температур теплоносителя после узла элеваторного или насосного смешения (температурные графики качественного регулирования).

Примечание– Следует иметь ввиду, что расчетные значения Тсм и Тобр (смотри п. 2.6.4.2), выводимые на ЖКИ блока управления, носят оценочный характер, т.к. условия эксплуатации объекта постоянно изменяются.

Типовой расчетный температурный график 95/70 (где 95°С – температура Тсм, а 70°С – температура Тобр при Тнар= -25°С) для среднестатистического здания, в котором обеспечивают температуру Твн=18°С, имеет вид, приведенный на рисунке 3.

Если в качестве Твн задается температура отличная от 18°С, то блок управления производит перерасчет графиков для этого значения температуры.

Вид температурных графиков качественного регулирования зависит от характеристик конкретного объекта, на котором устанавливается регулятор. Для адаптации температурных графиков к конкретным условиям эксплуатации регулятора применяется корректирующий коэффициент тепловых потерь К_{ктп}, устанавливаемое значение которого в процессе наладки может изменяться в пределах от 0,5 до 1,5, при этом:

1) К_{кт}=1 для среднестатистического здания с температурным графиком качественного регулирования 95/70;

2) К_{ктт}=1,5 для слабо утепленного здания (например: ангара) с температурным графиком качественного регулирования 130/65;

3) К_{ктп}=0,5 для хорошо теплоизолированного здания с температурным графиком качественного регулирования 60/40.

При наладке регулятора на объекте эксплуатации сначала задается типовое значение К_{ктп} (одно из приведенных выше, в зависимости от оценочных или проектных характеристик здания), а затем производится его корректировка в соответствии с конкретными условиями применения. Корректировка производится по формуле:

$$K_{\text{km2}} = K_{\text{p}} \times K_{\text{km1}} \tag{1}$$

где К_{ктп}- первоначально установленный (смотри п. 2.5.3.3) корректирующий коэффициент тепловых потерь;

Кр-коэффициент коррекции;

К_{кт2}- новое значение корректирующего коэффициента тепловых потерь, которое необходимо ввести в блок управления регулятора.

Коэффициент Кр определяется по формуле:

$$K_{p} = \frac{T_{BH, \Pi p or} - T_{Hap, cp}}{T_{BH, \phi} - T_{Hap, cp}}$$
(2)

где Твн.прог- установленное (запрограммированное) значение температуры воздуха внутри наиболее типичного помещения объекта;

Тн.ср– среднее значение температуры наружного воздуха за выбранный период работы предварительно настроенного регулятора;

Твн.ф- среднее значение температуры воздуха внутри помещения за выбранный период работы предварительно-настроенного регулятора.

Пример:

Пусть первоначально в процессе предварительной наладки контура регулятора, работающего по схеме «Отопление» было установлено значение корректирующего коэффициента тепловых потерь $K_{km1}=1$, при этом Твн.прог запрограммировано равным 20°С.

Далее при устойчиво работающем регуляторе проводят серию измерений температур Тнар, Твн и определяют их средние значения. Пусть, например:

Далее определяют:

$$K_p = \frac{20 - (-10)}{18 - (-10)} = \frac{30}{28} = 1,07$$

Новое значение Ккпп, которое необходимо ввести в блок управления для данного контура будет равно:

2.5.2.3 Если спецификой объекта эксплуатации регулятора предусматривается (например по требованию теплоснабжающей организации) контроль температуры теплоносителя в обратном трубопроводе с целью ограничения максимальных значений Тобр в соответствии с заданным температурным графиком, то алгоритм работы контура регулирования имеет дополнительные особенности.

При включенном режиме контроля «Контроль обр.: производится» (смотри п. 2.6.3.2) регулятор контролирует выполнение условия Тобр≤ Тобр_{расч}, где Тобр_{расч}– расчетное значение температуры теплоносителя в обратном трубопроводе системы отопления, соответствующее типовому температурному графику качественного регулирования 105/70 или 95/70 °C для текущего значения Тнар и установленного значения Твн. Если условие Тобр Тобр_{расч} выполняется, то алгоритм работы регулятора совпадает с алгоритмом п. 2.5.2.2.

Если Тобр_{расч} < Тобр, то регулятор вырабатывает сигнал управления, закрывающий клапан до тех пор пока не будет выполнено условие Тобр≤ Тобр_{расч}.

Если режим контроля выключен «Контроль обр.: не производится» (смотри п. 2.6.3.2), то контур регулирования работает по алгоритму п. 2.5.2.2.

2.5.2.4 При схеме работы «Отопление» контур регулятора может осуществлять управление в одном из трёх режимов:

Режим 1- Регулирование вручную;

Режим 2- Регулирование по заданной фиксированной температуре Твн;

Режим 3– Регулирование по заданному графику температур для каждого часа каждого дня недели (понижения температуры для ночного времени и выходных дней).

2.5.2.5 При реализации схемы с максимальным набором оборудования регулятор выполняет:

 раздельное управление двумя подмешивающими или циркуляционными насосами с возможностью резервирования по времени;

 контроль (проверка на наличие или отсутствие аварийной ситуации) функционирования системы регулирования по давлению; -контроль (проверка на наличие или отсутствие аварийной ситуации) функционирования системы регулирования по температуре;

-контроль (проверка на наличие или отсутствие аварийной ситуации) функционирования системы регулирования по температуре и давлению;

- защиту насосов от «сухого хода».

2.5.2.6 Блок управления отображает в соответствующем меню ошибку в функционировании контура регулирования в следующих случаях:

-неисправность одного из основных каналов измерений температуры (Тнар, Тсм, Тобр);

-срабатывание ДКС;

-нарушение нормального функционирования контура регулирования (возникновение «запрограммированных событий» по давлению Р или по температуре Т).

При этом, в случае выхода из строя одного из основных температурных каналов или срабатывания ДКС возникшая ошибка сразу отображается на ЖКИ, а красный светодиод «Авария» переводится в состояние свечения. При возникновении «запрограммированных событий» нарушения нормального функционирования контура регулирования индикация ошибки и включение светодиода «Авария» происходит в соответствии с установленным алгоритмом через запрограммированные интервалы времени. Алгоритм работы регулятора при возникновении «запрограммированных событий» нарушения нормального функционирования и обеспечении режима АВР насосов подробно рассмотрен в п. 2.5.4.

2.5.3 Описание алгоритма работы контура регулирования по схеме «Подпитка»

2.5.3.1 В общем виде схемы подключений контура регулятора, для которого выбрана схема работы «Подпитка», приведены на рисунке А.7 (приложение А). При этом на рисунке А.7(а) приведена схема с минимальным набором оборудования, позволяющим реализовать поддержание требуемого давления в линии подпитки, а на рисунке А.7(б) приведена схема с максимальным набором оборудования. Датчики контроля насосов (ДКН) и датчики сухого хода (ДКС), которые в случае необходимости подключаются к соответствующим входам блока управления, на схеме не указаны. Цифровой датчик давления (Р), манометр электроконтактный (МЭ), ДКН и ДКС подключаются в соответствии с рисунком Б.1 приложения Б. Внимание! В случае использования ДКС, при их срабатывании происходит безусловное отключение работающих повысительных насосов или блокировка их включения (если насосы в данный момент не работают).

В случае необходимости контакты МЭ, срабатывающие при снижении давления в точке установки манометра ниже установленного значения Pmin могут подключаться и к входу ДКН 2 блока управления.

Примечание– Для работы по схеме «Подпитка» может быть сконфигурирован только второй контур регулирования.

При работе по схеме «Подпитка» блок управления регулятора по результатам измерений давления в линии подпитки вырабатывает управляющее воздействие на регулирующий клапан, который изменяет расход холодной воды в линии подпитки. В случае применения в схеме одного или двух повысительных насосов (рисунок А.7 (б)) блок управления по сигналам с электроконтактного манометра включает или выключает их в соответствии с заданным алгоритмом.

Целью этих воздействий на исполнительные механизмы является поддержание постоянного давления на выходе линии подпитки.

При этом управляющее воздействие на регулирующий клапан вырабатывается по ПИД-закону, а воздействие на повысительные насосы осуществляется в соответствии со следующим алгоритмом:

 – если давление в точке установки МЭ становится ниже установленного значения Pmin, то блок управления даёт команду на включение повысительного насоса и далее по алгоритму работы при возникновении «запрограммированных событий» нарушения нормального функционирования;

 – если давление в точке установки МЭ становится выше установленного значения Ртах, то блок управления даёт команду на выключение насоса или насосов (если в этот момент работали два насоса. 2.5.3.2 При схеме работы «Подпитка» может осуществляться регулирование в одном из двух режимов:

Режим 1- Регулирование вручную;

Режим 2- Регулирование фиксированному значению давления;

2.5.3.3 При реализации схемы с максимальным набором оборудования регулятор выполняет:

 раздельное управление двумя повысительными насосами с возможностью резервирования по времени;

контроль (проверка на наличие или отсутствие аварийной ситуации) функционирования контура регулирования по давлению;

- защиту насосов от «сухого хода».

2.5.3.4 Блок управления отображает в соответствующем меню ошибку в функционировании контура регулирования в следующих случаях:

-срабатывание ДКС;

-нарушение нормального функционирования контура регулирования (возникновение «запрограммированных событий» по давлению Р);

-срабатывание контактов электроконтактного манометра Pmin или Pmax.

При этом, в случае срабатывания ДКС или контактов Pmin (или Pmax) возникшая ошибка сразу отображается на ЖКИ, а красный светодиод «Авария» переводится в состояние свечения. При возникновении «запрограммированных событий» нарушения нормального функционирования контура регулирования индикация ошибки и включение светодиода «Авария» происходит в соответствии с установленным алгоритмом через запрограммированные интервалы времени. Алгоритм работы регулятора при возникновении «запрограммированных событий» нарушения нормального функционирования и обеспечении режима АВР насосов рассмотрен в п. 2.5.4.

2.5.3.5 Примеры реализации схем регулирования: «ГВС» (контур1) + «Подпитка» (контур 2) и «Отопление» (контур 1) + «Подпитка» (контур 2) приведены на рисунках А.8 и А.9 приложения А.

2.5.4 Алгоритм работы регулятора при нарушении нормального функционирования и обеспечении режима ABP насосов.

2.5.4.1 В случае, если в контуре регулирования установлено два насоса, то при нормальном функционировании системы один находится в рабочем состоянии (активном или режиме ожидания включения, если этого требует алгоритм работы), а другой находится в резерве. На резервном насосе можно проводить профилактические ремонтные работы, не нарушая функционирования системы. Интервал резервирования и время переключения устанавливаются в соответствующих меню регулятора (режим главного меню **«Конфигурация»**), которые рассмотрены далее. Под насосом «А» в меню подразумевается насос, который в данный момент находится в рабочем состоянии, а под насосом «В» тот, который в данный момент находится в резерве. При этом насосом А может быть, в зависимости от текущего состояния функции резервирования, как насос H1 (по схеме), так и насос H2 (для схемы «Подпитка» ПH1 и ПH2 соответственно). В случае отключенной функции резервирования (Интервал резерва = 0 суток) насосом А всегда является H1 (ПH1 для схемы «Подпитка).

2.5.4.2 Алгоритм работы для схемы «ГВС».

В дополнение к управлению с возможностью резервирования двумя насосами может (в случае необходимости) контролироваться разность температур Тгв-Тконт и (или) давление в линии рециркуляции на выходе насосов (ДКН). Если контролируемая разность температур больше запрограммированного значения, а также, если отсутствует давление в линии рециркуляции (сработал ДКН), то фиксируется событие ненормального функционирования насоса А. Дальнейшие действия определяются порядком, установленным в меню «Алгоритм насосов» режима «Конфигурация» главного меню. В данном меню выбирается порядок действий в случае возникновения события ненормального функционирования:

-А>Е – через время анализа taн включить индикацию ошибки «Е» на ЖКИ и светодиод «Авария»; -A>Б>Е – через время taн включить насос Б и (если событие осталось) через taн включить индикацию ошибки «Е» и светодиод «Авария»;

-A>A+Б>E – через время taн дополнительно включить насос Б и (если событие осталось) через taн включить индикацию ошибки «Е» и светодиод «Авария»;

-A>Б>A+Б>E – через время taн включить насос Б и (если событие осталось) через taн включить оба насоса и (если событие осталось) через taн включить индикацию ошибки «Е» и светодиод «Авария».

После устранения события реле аварии выключается, и регулятор оставляет включенным насос А.

Внимание! Контроль насосов проводится только в том случае, если по запрограммированному алгоритму работы регулятора насосы в данный момент времени должны быть включены. В противном случае контроль не осуществляется и по умолчанию считается, что событие устранено.

Если в конкретной схеме контура регулирования нет необходимости использовать насосы или контролировать их работу, то в меню **«Контроль насосов»** режима «Конфигурация» главного меню регулятора выбирается: **«Не производится»**.

2.5.4.3 Алгоритм работы для схемы «Отопление».

В дополнение к управлению с возможностью резервирования двумя насосами может (в случае необходимости) контролироваться разность температур Тконт-Тсм (в этом случае датчик контрольной температуры устанавливается перед узлом смешения или на входе теплообменника) и (или) давление на выходе насосов (ДКН). Если контролируемая разность температур меньше запрограммированного значения, а также, если отсутствует давление (сработал ДКН), то фиксируется событие ненормального функционирования насоса А. Дальнейшие действия определяются порядком, установленным в меню «Алгоритм насосов» и совпадают с п. 2.5.4.2.

Внимание! Контроль насосов проводится только в том случае, если по запрограммированному алгоритму работы регулятора насосы в данный момент времени должны быть включены. В противном случае контроль не осуществляется и по умолчанию считается, что событие устранено.

Если в соответствии с выбранным алгоритмом работы для системы отопления насос используется в качестве циркуляционного (рисунки А.4–А.6), то он должен быть включен постоянно. Если в контуре используется два насоса, то постоянно один из них включен, а второй находится в резерве.

Если в конкретной схеме контура регулирования нет необходимости контролировать работу насосов, то в меню «Контроль насосов» режима «Конфигурация» главного меню регулятора выбирается: «Не производится».

2.5.4.4 Алгоритм работы для схемы «Подпитка».

Возможны два варианта работы.

<u>Вариант 1</u>

В схеме, приведенной на рисунке А.7 (б), один из насосов постоянно включен, а второй находится в резерве, МЭ не применяется. Контроль и управление работой насосов осуществляется с помощью ДКН, установленного на выходе насосов. Если срабатывает ДКН, то фиксируется событие ненормального функционирования насоса А. Дальнейшие действия определяются порядком, установленным в меню «Алгоритм насосов» и совпадают с п. 2.5.4.2.

Вариант 2

В схеме, приведенной на рисунке А.7 (б), контроль и управление работой насосов осуществляется с помощью МЭ. Если давление, измеряемое МЭ отвечает условию Pmin <P< Pmax насосы отключены. Pmin значение давления, установленного на МЭ, для которого выполняется условие: если Р \leq Pmin, то соответствующие контакты (вход РЗ блока управления) МЭ находятся в активном состоянии (замкнуто или разомкнуто в зависимости от конфигурации). Pmax значение давления, установленного на МЭ (вход Р4), для которого выполняется условие: если Pmax \leq P, то соответствующие контакты МЭ находятся в активном состоянии (замкнуто или разомкнуто в зависимости от конфигурации).

Если давление отвечает условию Р≤ Ртіп, блок управления включает насос А. Дальнейшие действия определяются порядком, установленным в меню «Алгоритм насосов» до выполнения условия Ртах ≤ Р, при выполнении этого условия насос (или насосы) отключаются.

2.6 Описание режимов главного меню регулятора

2.6.1 Описание режима «Служебный»

Внимание! Процесс наладки регулятора на объекте эксплуатации начинается с установки в подменю «Изменение конфигурации» разрешения на изменение конфигурации (состояние «Разрешено»). Если устанавливается разрешение на изменение конфигурации, то во всех меню регулятора параметры, которые могут подвергаться изменению начинают мигать. Мигание прекращается после установки запрета на изменение конфигурации. Если в течение 5 минут отсутствует воздействие на клавиатуру, то блок управления автоматически переводит ЖКИ в режим отображения окна состояния регулятора (смотри рисунок 1) и устанавливает запрет на изменение конфигурации.

Внешний вид режима «Служебный» главного меню регулятора представлен на рисунке 4.

Рисунок 4

Безусловный переход из любого подменю в главное меню регулятора выполняется с помощью кнопки « >». Последующее нажатие на эту же кнопку переводит ЖКИ в режим отображения окна состояния регулятора (рисунок 1). Сказанное распространяется и для других режимов главного меню.

2.6.2 Описание режима «Выбор схемы»

Следующим этапом в процессе наладки регулятора после установки на разрешения на изменение конфигурации и необходимых настроек в режиме меню «Служебный» является выбор схемы работы для каждого из контуров регулирования. Он выполняется в режиме «Выбор схемы» главного меню. Варианты схем, которые можно выбрать для каждого из контуров регулирования, приведены в таблице 1.

Примечание— Если для контура регулирования выбирается новый тип схемы, то установленные ранее настройки параметров регулирования сбрасываются, а для вновь выбранной схемы устанавливаются заводские предварительные настройки. Дальнейшие наладочные операции, направленные на уточнение параметров регулирования, выполняются для полной адаптации изделия к специфике конкретного объекта.

Структура режима «Выбор схемы» главного меню регулятора представлена на рисунке 5.

2.6.3 Описание режима «Конфигурация»

Просмотр и изменение параметров регулирования, алгоритмов работы при нарушениях нормального функционирования, конфигурирование входов от ДКН, ДКС и МЭ осуществляются в режимах главного меню «Конфигурация » и «Конфигурация » для каждого из контуров отдельно. Структуры режимов «Конфигурация» одинаковы как для 1-го, так и для 2-го контура регулирования и зависят от выбранной схемы работы. Исключение составляет случай, когда для второго контура выбрана схема «Подпитка».

Изменение настроек возможно только в случае, если в режиме меню «Служебный» установлено разрешение на изменение конфигурации.

2.6.3.1 Схема «ГВС».

Структура режима меню «Конфигурация» для контура регулирования со схемой работы «ГВС» показана на рисунке 6. В качестве примера представлен второй контур.

Примечание– На рисунке 6 штриховыми линиями обведены пункты меню, которые дополнительно появляются в структуре режима «Конфигурация», если в режиме «Служебный» установлено аналоговое управление клапаном (смотри рисунок 4). Все остальные пункты совпадают по назначению, как для релейного, так и для аналогового типа управления. В случае необходимости, в комментариях к конкретным пунктам даны соответствующие пояснения.

- Выбор режима работы: «Фиксированное значение», «График по часам», «Отключён» (ручной режим) выполняется с помощью кнопок « [↑] » и « [▶] ».

- Меню установки (корректировки) графиков работы регулятора по дням недели и часам. Корректируемый параметр выбирается с помощью курсора «v» при помощи кнопки « * ». Значение параметра изменяется с помощью кнопки « * ». Алгоритм установки и корректировки графика работы регулятора подробно описан в приложении Д. Настройки данного меню актуальны (влияют на алгоритм работы), если в предыдущем пункте выбран режим «График по часам».

Данная уставка задаёт нижнюю границу (в процентах от диапазона управляющего сигнала) положения клапана с аналоговым управлением при закрытии. Изменение уставки выполняется с помошью кнопок « ▲ » и « ▶ ».

- Данная уставка задаёт верхнюю границу (в процентах от диапазона управляющего сигнала) положения клапана с аналоговым управлением при открытии. Изменение уставки выполняется с помощью кнопок « • » и « • ».

- Длительность (в секундах) хода штока клапана с релейным управлением (открытие/закрытие) для обеспечения изменения Тгв на 10°С (коэф-т П=хх.х с/10°С). Для клапана с аналоговым управлением изменение управляющего сигнала в вольтах для аналогичного изменения Тгв (V/°С). Значение параметра изменяется с помощью кнопок « ◆ » и « ▶ ». Порядок определения параметра П изложен в п.2.7.

- Динамический диапазон изменения Тгв в зависимости от ее потребления при стационарном положении штока клапана (коэф-т Д). Значение параметра изменяется с помощью кнопок « ◀ » и « ▶ ». Порядок определения параметра Д изложен в п.2.7. Если коэффициент Д устанавливается равным 0, то дифференциальная составляющая закона регулирования отключается.

- Установка инерционности системы регулирования во времени (коэф-т И т.е. время, в течение которого производится усреднение измеренного отклонения температуры Тгв от требуемого значения). Значение параметра изменяется с помощью кнопок « ↑ » и « ▶ ». Порядок определения параметра И изложен в п.2.7. Если время подстройки устанавливается равным 0, то интегральная составляющая закона регулирования отключается.

- Выбор одного из вариантов контроля температуры в обратном трубопроводе: «не производится», «производится» выполняется с помощью кнопок « ▲ » и « ▶ ». При установке «не производится» алгоритм работы контура регулирования соответствует п. 2,5.1.2 или п.2,5.1.3. При установке «производится» алгоритм работы соответствует п. 2,5.1.4 режим работы с ограничением Тобр в соответствии с температурным графиком качественного регулирования (95/70 или 105/70°C)

- Выбор значения минимальной температуры наружного воздуха для графика качественного регулирования, нормируемой для данного региона, выполняется с помощью кнопок « • » и « • » в диапазоне от 0 до -60°C. Регулятор автоматически вычисляет расчётное значение Тобр соответствующее измеренному текущему значению Тнар.

-Установка времени включения системы ГВС с помощью регулятора. Значение параметра изменяется с помощью кнопок « • » и « • ». При включении системы ГВС с помощью регулятора сначала включается циркуляционный насос (если он используется в контуре регулирования), а затем начинает работать управление регулирующим клапаном.

-Установка времени выключения системы ГВС с помощью регулятора. Значение параметра изменяется с помощью кнопок « ▲ » и « ▶ ». При выключении системы ГВС с помощью регулятора насос (если он используется в контуре регулирования) выключается через 4 минуты после того, как регулирующий клапан перешел в состояние «Закрыто». Такая последовательность выполняемых операций предотвращает перегрев теплообменника.

- Выбор одного из следующих вариантов контроля: «не производится», «по температуре», «по давлению», «по температуре и давлению» выполняется с помощью кнопок « ◀ » и « ▶ ».

- Выбор варианта срабатывания контактов аварийного датчика давления (ДКН) для входа P1: «по замыканию» или «по размыканию» выполняется с помощью кнопок « • » и « • ».

- Выбор варианта срабатывания контактов аварийного датчика давления (ДКС) для входа Р2: «по замыканию» или «по размыканию» выполняется с помощью кнопок « • » и « • ».

- Выбор режима работы клапана при аварии насоса: «покой», «открытие», «закрытие», «регулирование» выполняется с помощью кнопок « • » и • ».

-Выбор последовательности действий в случае нарушения нормального функционирования (смотри п. 2.5.4) выполняется с помощью кнопок « ↑ » и « ▶ ». Если в меню «Контроль насосов» установлен режим «не производится», то установки данного меню не влияют на алгоритм работы.

- <u>Х</u>-программируемое значение интервала времени резервирования от 0 до 10 суток (выбор выполняется с помощью кнопок « \bullet » и « \bullet ». t=Y – индикация времени, прошедшего с начала очередного интервала резервирования. «N»– normal (A=H1), «R»– reserve (A=H2) в данный момент времени (смотри п. 2.5.4).

- Время переключения на резервный насос с 0 до 23 ч устанавливается с помощью кнопок « ◀ » и « ▶ ».

Рисунок 6 (Продолжение)

- Установка интервала анализа от 1 до 30 мин. выполняется с помощью кнопок « ↓ » и « ↓ ». Если в меню «Контроль насосов» установлен режим «не производится», то установки данного меню не влияют на алгоритм работы.

- Установка значения максимально допустимой разности температур /Тгв-Тк/ от 1 до 40 °С выполняется с помощью кнопок « ◆ » и « ▶ ». Если в меню «Контроль насосов» установлен режим «не производится», то установки данного меню не влияют на алгоритм работы.

Рисунок 6 (Продолжение)

2.6.3.2 Схема «Отопление».

Структура режима меню «Конфигурация» для контура регулирования со схемой работы «Отопление» показана на рисунке 7. В качестве примера представлен второй контур. Пункты меню, которые полностью совпадают со схемой «ГВС», на структурной схеме не приводятся, на их месте даётся ссылка на рисунок 6. В качестве примера представлен второй контур.

Примечание– На рисунке 7 штриховыми линиями обведены ссылки на рисунок 6. В месте расположения этих ссылок структура, логика и содержание меню для схемы «Отопление» полностью соответствует структуре для схемы «ГВС».

- Выбор режима работы: «Фиксированное значение», «График по часам», «Отключён» (ручной режим) выполняется с помощью кнопок « ⁴ » и « [▶] ».

- Длительность (в секундах) хода штока клапана с релейным управлением (открытие/закрытие) для обеспечения изменения Тсм (на 10°С (коэф-т П=хх.х с/10°С). Для клапана с аналоговым управлением изменение управляющего сигнала в вольтах для аналогичного изменения Тсм (V/°С). Значение параметра изменяется с помощью кнопок « ♥ » и № ». Порядок определения параметра П изложен в п.2.7.

 Установка инерционности системы регулирования во времени (коэф-т И т.е. время, в течение которого производится усреднение измеренного отклонения температуры Тсм от требуемого значения). Значение параметра изменяется с помощью кнопок « ▲ » и « ▶ ». Порядок определения параметра И изложен в п...2.7. Если время подстройки устанавливается равным 0, то интегральная составляющая закона регулирования отключается

- Установка корректирующего коэффициента тепловых потерь Кктп (см. п. 2.5.2.2). Значение параметра изменяется с помощью кнопок « ↓ » и « ↓ ».

- Выбор одного из вариантов контроля температуры в обратном трубопроводе: «не производится», «производится» выполняется с помощью кнопок « ▲ » и « ▶ ». При установке «не производится» алгоритм работы контура регулирования соответствует п. 2.5.2.2. При установке «производится» алгоритм работы соответствует п. 2.5.2.3– режим работы с ограничением Тобр в соответствии с температурным графиком качественного регулирования (95/70 или 105/70°С).

- Выбор температурного графика (95/70 или 105/70°С) выполняется с помощью кнопок « ◀ » и « ▶ ».

- Выбор значения минимальной температуры наружного воздуха для графика качественного регулирования, нормируемой для данного региона, выполняется с помощью кнопок « • » и « • » в диапазоне от 0 до -60°С. Регулятор автоматически вычисляет расчётное значение Тобр соответствующее измеренному текущему значению Тнар.

2.6.3.3 Схема «Подпитка».

Структура режима меню «Конфигурация» для контура регулирования со схемой работы «Подпитка» показана на рисунке 8. Для работы по данной схеме может быть сконфигурирован только второй контур регулирования.

Примечание– На рисунке 8 штриховыми линиями обведены пункты меню, которые дополнительно появляются в структуре режима «Конфигурация», если в режиме «Служебный» установлено аналоговое управление клапаном (смотри рисунок 4). Все остальные пункты совпадают по назначению, как для релейного, так и для аналогового типа управления. В случае необходимости, в комментариях к конкретным пунктам даны соответствующие пояснения.

- Выбор режима работы: «Фиксированное значение», «Отключён» (ручной режим) выполняется с помощью кнопок « [●] » и « [▶] ».

- Данная уставка задаёт нижнюю границу (в процентах от диапазона управляющего сигнала) положения клапана с аналоговым управлением при закрытии. Изменение уставки выполняется с помощью кнопок « ⁴ » и « [▶] ».

- Данная уставка задаёт верхнюю границу (в процентах от диапазона управляющего сигнала) положения клапана с аналоговым управлением при открытии. Изменение уставки выполняется с помощью кнопок « ⁴ » и « [▶] ».

2.6.4 Описание режима «Рабочий»

Просмотр состояния контура регулирования, изменение уставок по температуре и давлению, управление исполнительными устройствами в ручном режиме осуществляются в режимах главного меню «Рабочий)» и «Рабочий)» для каждого из контуров отдельно. Структуры режимов «Рабочий» одинаковы как для 1-го, так и для 2-го контура регулирования и зависят от выбранной схемы работы. Исключение составляет случай, когда для второго контура выбрана схема «Подпитка».

Изменение настроек возможно только в случае, если в режиме меню «Служебный» установлено разрешение на изменение конфигурации.

2.6.4.1 Схема «ГВС».

Структура режима меню «Рабочий» для контура регулирования со схемой работы «ГВС» показана на рисунке 9. В качестве примера представлен второй контур.

-В верхней строке отображается текущее измеренное значение температуры горячей воды. В нижней строке отображается состояние контура в зависимости от режима работы установленного в меню «Режим ГВС» (смотри рисунок 6):

1) для режима «Фиксированное значение»: «Вкл (или Откл). норма XX°», где «Вкл» означает контур включен («Откл»-выключен) в соответствии с настройками времени включения/отключения (рисунок 6), а «норма XX°»- температурная уставка (требуемое значение Тгв), значение уставки изменяется с помощью кнопок « + » и « + »;

2) для режима «График по часам»: «По графику XX°» - текущая температурная уставка Тгв в соответствии с графиком;

3) для режима «Отключен» (ручной режим): текущее состояние клапана (работа в ручном режиме управления рассмотрена в п. 2.6.5).

-В верхней строке отображается текущее измеренное значение температуры теплоносителя в обратном трубопроводе Тобр. В нижней строке отображается температурная уставка максимально допустимого Тобр_{max}, значение уставки изменяется с помощью кнопок « ◀ » и « ▶ »

-Если установлен режим «Контроль обр.: производится» (смотри п. 2.6.3.1 и п. 2.5.1.4), то в верхней строке выводится измеренное значение температуры наружного воздуха, а в нижней- минимальное из значений Тобр_{тах} и Тобр_{ресч}. Если установлено «Контроль обр.: не производится» и датчик Тнар не применяется, то в верхней строке выводятся символы «***», а в нижней- Тобр_{тах}, такое же, как и в предыдущем меню.

- В нижней строке отображается текущее измеренное значение контрольной температуры.

-В верхней строке отображается состояние входов Р1 (ДКН) и Р2 (ДКС). В случае нормального функционирования в разрядах состояния отображаются символы «0». В случае срабатывания (замыкание-размыкание контактов) датчика контроля насоса (ДКН) или датчика сухого хода (ДКС) в соответствующем разряде отображается «1». После восстановления нормального функционирования «1» сменяется «0». В нижней строке отображаются ошибки Регг и Тегг. В случае нормального функционирования контура в разрядах состояния отображаются символы «0». В нижней строке отображаются ошибки Регг и Тегг. В случае нормального функционирования контура в разрядах состояния отображаются символы «0». Если срабатывает ДКН, то, если это предусмотрено алгоритмом п.2.5.4 и настройками режима «Конфигурация», по истечении интервала времени анализа ошибки устанавливается Регг: <u>1</u>. Если выходит из строя основной температурный канал, то устанавливается Тегг: <u>1</u>. После восстановления нормального функционирования в соответствующем разряде вместо «1» отображается «0».

Рисунок 9 (Продолжение)

2.6.4.2 Схема «Отопление».

Структура режима меню «Рабочий» для контура регулирования со схемой работы «Отопление» показана на рисунке 10. В качестве примера представлен второй контур.

2.6.4.3 Схема «Подпитка».

Структура режима меню «Рабочий» для контура регулирования со схемой работы «Подпитка» показана на рисунке 11. По данной схеме может работать только второй контур регулирования.

-В верхней строке отображается текущее измеренное давление на выходе линии подпитки. В нижней строке отображается состояние контура в зависимости от режима работы установленного в меню «Режим подпитки» (смотри рисунок 8):

1) для режима «Фиксированное значение»: «Норма XX.XX бар», где XX.XX» уставка по давлению (требуемое значение Рпод), значение уставки изменяется с помощью кнопок « ⁴ » и « [▶] »;

2) для режима «Отключен» (ручной режим): текущее измеренное давление на выходе линии подпитки и текущее состояние клапана (работа в ручном режиме управления рассмотрена в п. 2.6.5).

-В верхней строке отображается состояние входов Р1 (ДКН) и Р2 (ДКС). Логика работы такая же, как и на рисунке 9.

В нижней строке отображается состояний входов Р3 и Р4, к которым подключаются контакты манометра электроконтактного МЭ, соответствующие значениям Pmin и Pmax, установленным на манометре. При значениях давления $P \le Pmin$ устанавливается P3min: 1, а при значениях давления $P \ge Pmax$ устанавливается Р4max: 1.

Рисунок 11

2.6.5 Работа в режиме ручного управления исполнительными устройствами

Во время проведения пуско-наладочных работ и при выполнении операций по диагностике системы может возникнуть необходимость в управлении исполнительными устройствами (клапанами, насосами) непосредственно с клавиатуры блока управления. Для этого в регуляторе реализован режим ручного управления.

2.6.5.1 Схема «ГВС»

Для перевода контура регулирования, работающего по схеме «ГВС», в режим ручного управления необходимо меню «Режим ГВС» (смотри рисунок 6) перевести в состояние «Отключен». После этого регулятор прекращает работу по установленному до этого алгоритму, а в режиме «Рабочий» соответствующего контура появляются дополнительные меню управления исполнительными устройствами с клавиатуры блока управления.

-В верхней строке отображается текущее измеренное значение температуры горячей воды. В нижней строке отображается текущее состояние регулирующего клапана. Перевод клапана в состояние: «ПОКОЙ», «ОТКРЫТИЕ», «ЗАКРЫТИЕ» выполняется с помощью кнопок « ▲ » и « ▶ ». Для клапана с аналоговым управлением в нижней строке выводится «Полож. клапана ХХ%», изменение положения выполняется с помощью кнопок « ▲ » и « ▶ ».

-Включение (выключение) насосов выполняется с помощью кнопок « ◆ » и « ▶ » Последовательно задаваемые состояния: «ВКЛЮЧЕН Н1», «ВКЛЮЧЕН Н2», «ВКЛЮЧЕНЫ Н1+Н2», «отключены».

Внимание! В случае срабатывания ДКС включение насосов блокируется.

Рисунок 12

Для перевода контура регулирования из режима ручного управления в режим автоматического регулирования необходимо меню «Режим ГВС» перевести, в соответствии с выбранным алгоритмом работы, в состояние «Фиксированное значение» или «График по часам» (смотри рисунок 6).

2.6.5.2 Схема «Отопление»

Для перевода контура регулирования, работающего по схеме «Отопление», в режим ручного управления необходимо меню «Режим отопл.» перевести в состояние «Отключен» (смотри рисунок 7). После этого регулятор прекращает работу по установленному до этого алгоритму, а в режиме «Рабочий» соответствующего контура появляются дополнительные меню управления исполнительными устройствами с клавиатуры блока управления.

-В верхней строке отображается текущее измеренное значение температуры наружного воздуха. В нижней строке отображается текущее состояние регулирующего клапана. Перевод клапана в состояние: «ПОКОЙ», «ОТКРЫТИЕ», «ЗА-КРЫТИЕ» выполняется с помощью кнопок « ⁴ » и « [▶] ». Для клапана с аналоговым управлением в нижней строке выводится «Полож. клапана XX%», изменение положения выполняется с помощью кнопок « ⁴ » и « [▶] ».

-Включение (выключение) насосов выполняется с помощью кнопок « ↓ » и « ▶ » Последовательно задаваемые состояния: «ВКЛЮЧЕН Н1», «ВКЛЮЧЕН Н2», «ВКЛЮЧЕНЫ Н1+Н2», «отключены».

Внимание! В случае срабатывания ДКС включение насосов блокируется.

Рисунок 13

Для перевода контура регулирования из режима ручного управления в режим автоматического регулирования необходимо меню «Режим отопл.» перевести, в соответствии с выбранным алгоритмом работы, в состояние «Фиксированное значение» или «График по часам» (смотри рисунок 7).

2.6.5.2 Схема «Подпитка»

Для перевода контура регулирования, работающего по схеме «Подпитка», в режим ручного управления необходимо меню «Режим подпитки» перевести в состояние «Отключен» (смотри рисунок 8). После этого регулятор прекращает работу по установленному до этого алгоритму, а в режиме «Рабочий» второго контура появляются дополнительные меню управления исполнительными устройствами с клавиатуры. Управление исполнительными устройствами в ручном режиме аналогично алгоритму, приведенному на рисунках 12 и 13.

2.6.6 Описание режима «Время»

В режиме «Время» главного меню регулятора осуществляется просмотр и корректировка (в случае необходимости) текущего времени и даты.

- В верхней строке отображаются текущие: день недели, дата, месяц и год. В нижней строке отображается текущее время (часы, минуты, секунды). Выбор корректируемого параметра выполняется с помощью кнопки « ↓ », а его изменение с помощью кнопки « ↓ ». День недели устанавливается автоматически с привязкой к установленной календарной дате.

2.7 Настройка параметров закона регулирования

Регулятор поставляется потребителю с предварительными заводскими настройками параметров регулирования для каждой из реализуемых схем работы.

Конкретная схема работы для каждого из контуров регулирования (смотри таблицу 1) конфигурируется на объекте эксплуатации, а параметры регулирования (в случае необходимости) уточняются в процессе наладки с учётом специфики объекта и применяемого оборудования для максимальной адаптации к условиям применения.

2.7.1 При определении значений коэффициентов П, И и Д управление регулирующим клапаном осуществляется в ручном режиме (смотри п.2.6.5) до получения требуемого стационарного (установившегося) значения регулируемой температуры.

Примечание– Под стационарным понимается значение регулируемой температуры, которое изменяется в незначительных пределах (примерно ±1°C), в течение достаточно продолжительного интервала времени (не менее 20 минут).

Рекомендации по экспериментальному определению вышеназванных коэффициентов являются обобщенными. Это вызвано тем, что в процессе эксплуатации теплотехнического оборудования конкретных объектов могут возникать нештатные ситуации, разрешение которых требуют от наладчика наличия определенного опыта в области эксплуатации и наладки теплотехнических систем.

Операции по определению параметров закона регулирования выполняются для каждого контура отдельно.

2.7.2 Время воздействия на регулирующий клапан (коэффициент П), необходимое для изменения регулируемой температуры Тр (Тгв- для схемы «ГВС», Тсм- для схемы «Отопление») на 10°С для каждого из контуров определяется экспериментальным путем. При этом выполняется следующая последовательность операций:

1) В режиме ручного управления регулирующим клапаном (при включенном насосе, если он используется) устанавливается регулируемая температура Тр близкой или равной требуемому (по графику регулирования) значению.

2) Делается выдержка времени для того, чтобы Тр приняла стационарное значение.

3) Последовательными перемещениями (только на открытие или только на закрытие) изменяется положение штока регулирующего клапана для того, чтобы получить изменение регулируемой температуры на величину $|\Delta Tp| \ge 10^{\circ}C$ (вновь полученное значение Tp также должно быть стационарным). Время каждого перемещения t_i (с) при последовательных изменениях положения штока должно фиксироваться.

4) Суммарное время τ хода штока клапана, в результате которого значение регулируемой температуры изменяется на величину $|\Delta Tp|$, определяется по формуле:

$$\tau = \sum_{i=1}^{n} t_i \tag{3}$$

где *n*- количество заданных перемещений.

5) Значение коэффициента П определяется по формуле:

6) Полученные значения коэффициентов П для каждого контура регулирования вводятся в меню «Рабочий диапазон клапана» (смотри п.2.6.3.1 и 2.6.3.2).

Пример:

Пусть при выполнении трех последовательных перемещений штока клапана (на открытие), продолжительность каждого из которых составила соответственно $t_1=20c$, $t_2=25c$, $t_3=15c$, было получено приращение регулируемой температуры $\Delta Tp=12$ °C.

Суммарная продолжительность однократных перемещений τ при этом равна: $\tau = t_1 + t_2 + t_3 = 20 + 25 + 15 = 60c$

Тогда коэффициент П численно равен:

$$\Pi = \frac{60 \times 10}{12} = 50$$

Примечание – В случае применения регулирующего клапана с аналоговым управлением (0 - 10 В) формула (4) записывается в виде:

$$\Pi = \frac{\left|\Delta V\right| \times 10^{\circ} \mathrm{C}}{\left|\Delta \mathrm{Tp}\right|} \,,$$

где ΔV - изменение управляющего сигнала в вольтах, приведшее к приращение регулируемой температуры $|\Delta Tp| \ge 10^{\circ}C$.

2.7.3 Инерционность системы (коэффициент И) также определяется экспериментальным путем для каждого контура регулирования. При этом выполняется следующая последовательность операций:

1) В режиме ручного управления регулирующим клапаном (при включенном насосе) устанавливается регулируемая температура Тр близкой или равной требуемому (по графику регулирования) значению.

2) Делается выдержка времени для того, чтобы Тр приняла стационарное значение.

3) Начинается отсчет времени t(мин.) (например: с помощью секундомера) и одновременно с этим в ручном режиме задается однократное перемещение (на открытие или на закрытие) штока регулирующего клапана. Продолжительность этого перемещения τ(с) должна отвечать условию:

$$\boldsymbol{\tau} \ge \boldsymbol{\Pi} \tag{5}$$

где П– численное значение коэффициента пропорциональности, определенного по методике п.2.7.2.

4) После выполнения условия (5) перемещение штока клапана прекращается. При этом отсчет времени t(мин) продолжается до момента достижения регулируемой температурой Тр нового (после заданного возмущения) стационарного значения.

5) После достижения Тр нового стационарного значения отсчет времени t (мин.) прекращается.

6) Значение параметра И (мин.) численно равно:

$$M=2\times t$$
 (6)

7) Полученное для каждого контура регулирования значение параметра И (мин.) вводится в меню «Расчет подстройки каждые <u>Х</u> мин» (смотри п.2.6.3.1 и п.2.6.3.2).

Примечание – В случае применения регулирующего клапана с аналоговым управлением (0 -10 В) задается однократное изменение сигнала управления большее или равное по модулю ΔV (изменению управляющего сигнала в вольтах, приведшему к приращению регулируемой температуры $|\Delta Tp| \ge 10^{\circ}$ С). При этом начинается отсчёт времени t (мин), который заканчивается после достижения Тр нового стационарного значения. Далее коэффициент И вычисляется по формуле (6).

2.7.4 Значение коэффициента Д в случае работы контура регулятора по схеме «ГВС» определяется экспериментально. При оптимальном значении коэффициента Д время перехода к стационарному (установившемуся) температурному режиму после мгновенного изменения потребления горячей воды будет минимальным при минимальной амплитуде колебаний переходного процесса. В случае определения значения параметра Д выполняется следующая последовательность операций:

1) В режиме ручного управления регулирующим клапаном (при включенном насосе, если он применяется) устанавливается температура Тгв близкой или равной требуемому значению.

2) Далее при стационарном положении штока регулирующего клапана проводится оценка динамики изменений Тгв в зависимости от изменения потребления (разбора) горячей воды. При этом возможны два варианта проведения наблюдений.

Вариант 1

На объекте имеется возможность принудительно осуществить кратковременное, но существенное изменение разбора. При этом существенным изменением разбора горячей воды, считается изменение ее расхода не менее чем на 10% от действительного значения. Эта ситуация возможна, например, при использовании горячей воды для технологических нужд.

В этом случае с момента скачкообразного принудительного изменения разбора начинается контроль динамики изменения температуры Тгв, т.е. фиксируется ΔТгв (°С) и интервал времени Δt(мин.), в течение которого это изменение произошло. Значение коэффициента Д определяется по формуле:

$$\mathcal{A} = \frac{\Delta T_{\text{FB}}}{\Delta t} \tag{7}$$

Пример:

При кратковременном изменении разбора горячей воды было зафиксировано изменение температуры горячей воды ΔT_{гB}=12 °C, которое произошло за интервал времени Δt=2 мин. Тогда коэффициент Д будет равен:

Вариант 2

На объекте (например, жилой дом) нет возможности искусственно осуществить изменение разбора.

В этом случае контроль динамики изменения Тгв в зависимости от потребления горячей воды ведется на границах пиков разбора (например, утреннее время перед уходом жильцов на работу или вечернее время после прихода с работы). При этом контролируются изменения температуры ΔТгв и интервалы времени, в течение которых эти изменения происходят.

Пример:

При естественном изменении разбора горячей воды было зафиксировано изменение температуры горячей воды $\Delta T_{\Gamma B}=10 \,$ с, которое произошло за интервал времени $\Delta t=2$ мин. Тогда коэффициент Д будет равен:

Наблюдения и соответствующие вычисления с целью определения величины коэффициента Д могут быть повторены. При этом в качестве вводимого в блок управления значения предпочтительно выбрать среднее арифметическое от значений, полученных в процессе наблюдений.

Примечание– При проведении наблюдений с целью определения параметра Д нежелательно, чтобы потребление горячей воды приближалось к минимуму (отсутствие разбора).

3) Далее полученное значение параметра Д вводится в меню «Динамический диапазон dT/dt: <u>X</u> °C» (смотри п.2.6.3.1).

2.7.5 Значение коэффициента Д в случае работы регулятора по схеме «Отопление» автоматически устанавливается равным нулю. Это обусловлено тем, что вследствие большой тепловой инерционности отопительных систем динамический диапазон изменения регулируемой температуры, вызванного внешним воздействием при стационарном положении штока клапана, пренебрежимо мал и может быть принят равным нулю.

Примечание– Под динамическим диапазоном изменения регулируемой температуры понимается скорость ее изменения.

2.7.6 В случае необходимости для получения более точных результатов настройки операции по определению любого из параметров (коэффициентов) закона регулирования могут быть повторены.

2.7.7 В случае работы контура регулятора по схеме «Отопление» последним этапом наладки регулятора является корректировка значения коэффициента Кктп. Методика выполнения корректировки коэффициента Кктп подробно изложена в п.2.5.2.2.

Изменение корректирующего коэффициента тепловых потерь позволяет адаптировать регулятор к конкретным условиям применения (например: к характеристикам объекта) и сгладить некоторые неточности, которые могли возникнуть в процессе определения параметров закона регулирования.

2.7.8 При работе второго контура регулирования по схеме «Подпитка» в подавляющем большинстве случаев предварительных заводских настроек параметров регулирования достаточно для эффективной работы. В случае необходимости более точной настройки, учитывающей специфику объекта эксплуатации, алгоритмы определения коэффициентов П, И и Д практически аналогичны изложенным в п.п. 2.7.1-2.7.4. Отличие состоит в том, что вместо настроек по температуре Тр (Δ Tp) выполняются настройки по давлению Р (Δ P), где Р и Δ P значения регулируемого давления и его изменение – соответственно.

2.7.9 Графическая иллюстрация ПИД-законов регулирования приведена на рисунке 15.

Рисунок 15

2.8 Аварийные режимы работы

2.8.1 Для предотвращения выхода из строя насосов, применяемых в схемах регулирования, предусмотрена защита от «сухого хода» (предотвращение работы при отсутствии воды в трубопроводе на входе насоса). Она реализуется путём установки и использования ДКС. При срабатывании ДКС блок управления регулятора сразу отключает аварийный насос и блокирует включение резервного насоса (если он используется) до устранения аварийной ситуации.

2.8.2 Для анализа работы насосов предусмотрено использование ДКН, которые устанавливаются на напорных выходах насосов. ДКН срабатывают при падении давления на выходе насосов. Алгоритмы работы регулятора при нарушении нормального функционирования и обеспечении режима АВР насосов рассмотрены в п. 2.5.4.

2.8.3 В регуляторе предусмотрена возможность ручного управления (с клавиатуры блока управления) исполнительными устройствами (клапанами и насосами) независимо от установленной схемы работы. Данный режим предназначен, в том числе, и для диагностики элементов системы при возникновении нештатных ситуаций.

2.8.4 При пропадании электроэнергии на длительное время необходимо вращением соответствующей рукоятки исполнительного механизма клапана перевести его в положение «Открыто».

Для исключения вероятности размораживания системы отопления объекта (схема «Отопление») рекомендуется:

-использовать регулирующие клапаны с возвратными пружинами, позволяющими при отключении электроэнергии клапану самостоятельно переходить в состояние «Открыто»;

-регулировку конечного выключателя положения «Закрыто» исполнительного механизма клапана с релейным управлением проводить таким образом, чтобы исключалось полное перекрытие потока теплоносителя;

-для клапанов с аналоговым управлением устанавливать в меню «Міп. положение клапана: Х%» (режим главного меню «Конфигурация») значение отличное от нуля, ис-ключающее полное перекрытие потока теплоносителя.

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1 Техническое обслуживание регулятора

3.1.1 Техническое обслуживание регулятора должно проводиться для обеспечения его нормального функционирования в течение всего срока эксплуатации.

3.1.2 Работы по техническому обслуживанию включают в себя:

-периодический осмотр;

-удаление (в случае необходимости) следов пыли и влаги;

-техническое обслуживание исполнительных устройств.

3.1.3 Периодический осмотр регулятора должен проводиться с целью контроля за:

- соблюдением условий эксплуатации;

- отсутствием внешних повреждений;

-надежностью механических и электрических соединений;

-работоспособностью.

Периодичность осмотра зависит от условий эксплуатации, но не должна быть реже одного раза в неделю.

3.1.4 Следы пыли и влаги с поверхности блока управления необходимо убирать мягкой сухой фланелью.

3.1.5 Техническое обслуживание исполнительных устройств (регулирующих клапанов и насосов) должно проводиться в полном соответствии с их эксплуатационной документацией. Проверка функционирования исполнительных механизмов проводится в рамках периодического осмотра (смотри п.3. 1.3).

3.2 Меры безопасности

3.2.1 Источниками опасности при монтаже и эксплуатации регулятора являются:

-переменное напряжение с действующим значением до 253 В;

-давление жидкости в трубопроводах, на которых устанавливаются исполнительные механизмы и термодатчики;

- высокая температура жидкости в трубопроводах (до 150 °C).

3.2.2 Безопасность эксплуатации регулятора обеспечивается:

-прочностью корпусов исполнительных устройств и термодатчиков;

-герметичностью фланцевых соединений исполнительных устройств с трубопроводами;

- герметичностью соединений термодатчиков с трубопроводами;

-изоляцией электрических цепей составных частей регулятора;

-надёжным заземлением составных частей регулятора.

3.2.3 При эксплуатации регулятора необходимо соблюдать общие требования безопасности:

-не допускается эксплуатация регулятора со снятыми крышками на блоке управления и исполнительных механизмах;

-запрещается демонтировать термодатчики и исполнительные механизмы до полного снятия давления в трубопроводах.

Перед включением регулятора в электрическую сеть необходимо заземлить его составные части.

При обнаружении внешних повреждений блока управления или линий электрических подключений следует отключить регулятор до устранения причин неисправности специалистом по ремонту.

Запрещается установка и эксплуатация регулятора в пожароопасных и взрывоопасных зонах всех классов.

При установке и монтаже регулятора необходимо соблюдать требования ГОСТ 12.3.003, ГОСТ 12.3.032, ГОСТ 12.3.036, а также Правил пожарной безопасности.

При эксплуатации необходимо соблюдать «Правила технической эксплуатации электроустановок потребителей», «Правила техники безопасности при эксплуатации электроустановок потребителей».

Для тушения пожара, при возгорании регулятора, разрешается использовать только углекислотные огнетушители типа ОУ-2, ОУ-5, ОУ-10 и др.

3.3 Техническое освидетельствование

Регулятор подвергается обязательным приемо-сдаточным испытаниям при выпуске из производства.

3.4 Возможные неисправности и способы их устранения

Таблица 2

Возможные неисправности и способы их устранения при эксплуатации регулятора приведены в таблице 2.

Вид неисправности, внешние проявления и дополнительные признаки	Вероятная причина	Способ устранения
1 При включении блока управ-	Отсутствует напряжение	Проверить цепи электропи-
ления отсутствует индикация	питания	тания
2 Вместо значений измеряемой	Обрыв цепей подключения	Устранить обрыв
температуры на ЖКИ выводится	термодатчика	1
значение «***», хотя термодат-	-	
чик установлен.		
Примечание Если термодатчик не		
используется (смотри Примечание к п.		
1.1.2.2)		
3 Вместо значений измеряемого	Отсутствует напряжение	Проверить наличие напря-
давления Р (схема «Подпитка»)	питания датчика, обрыв	жения питания, устранить
на ЖКИ выводится значение	цепей подключения	обрыв
«***», хотя цифровой датчик		
давления подключен		
4 Отсутствует перемешение ме-	Обрыв линии подключения	Устранить обрыв
ханизма исполнительного уст-	исполнительного устройст-	r Fri - F
ройства при наличии индикации	ва	
о его включении		
5 Нарушена логика работы регу-	Обнаружена неустранимая	Обратиться в сервисную
лятора, другие неисправности	неисправность	организацию
	· •	• •

4 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.1 Транспортирование регулятора должно производиться в соответствии с ГОСТ 12997 в закрытом транспорте (железнодорожных вагонах, контейнерах, закрытых автомашинах, трюмах судов). Условия транспортирования должны соответствовать:

- температура окружающего воздуха от минус 25 до плюс 50 °C;

- относительная влажность воздуха (95 ± 3) % при температуре 35 °C;

4.2 Хранение регулятора в упаковке должно соответствовать условиям хранения 1 по ГОСТ 15150, при этом относительная влажность воздуха при температуре 25 °C не должна превышать 95 %.

4.3 Срок пребывания регулятора в соответствующих условиях транспортирования не более одного месяца.

5 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

5.1 Гарантийный срок хранения 6 месяцев с момента отгрузки потребителю.

5.2 Гарантийный срок эксплуатации – 18 месяцев со дня ввода регулятора в эксплуатацию.

5.3 Изготовитель гарантирует соответствие регулятора требованиям ТУ при соблюдении потребителем условий монтажа, эксплуатации, технического обслуживания, хранения и транспортирования, установленных эксплутационной документацией.

Дата ввода в эксплуатацию должна быть отмечена в разделах 7 и 8 паспорта.

5.4 Гарантийные обязательства выполняются при условии сохранности пломб изготовителя.

Приложение А

Типовые схемы подключений регулятора

Схема «ГВС»

а) Контур ГВС с минимально-допустимым набором оборудования

б) Контур ГВС с максимальным набором оборудования

Примечание– Отсутствие любого элемента схемы, за исключением минимально-допустимого набора оборудования, учитывается регулятором автоматически и не влияет на фактический алгоритм работы.

Датчик температуры наружного воздуха устанавливается в случае, если требуется обеспечить режим работы контура с ограничением температуры теплоносителя в обратном трубопроводе в соответствии с заданным температурным графиком (смотри п. 2.5.1.4).

а) Вариант с подмешивающим насосом и двухходовым регулирующим клапаном (минимально-допустимый набор оборудования)

б) Вариант с управлением двумя подмешивающими насосами и двухходовым клапаном (максимальный набор оборудования)

Примечание– Отсутствие любого элемента схемы, за исключением минимальнодопустимого набора оборудования, учитывается регулятором автоматически и не влияет на фактический алгоритм работы.

a) Вариант с подмешивающим насосом и трёхходовым регулирующим клапаном (минимально-допустимый набор оборудования)

б) Вариант с управлением двумя подмешивающими насосами и трёхходовым регулирующим клапаном (максимальный набор оборудования)

Примечание– Отсутствие любого элемента схемы, за исключением минимальнодопустимого набора оборудования, учитывается регулятором автоматически и не влияет на фактический алгоритм работы.

a) Вариант с управлением регулирующим клапаном и циркуляционным насосом в независимом контуре отопления (минимально-допустимый набор оборудования)

б) Вариант с управлением регулирующим клапаном и двумя циркуляционными насосами в независимом контуре отопления (максимальный набор оборудования)

Примечания:

1) Отсутствие любого элемента схемы, за исключением минимальнодопустимого набора оборудования, учитывается регулятором автоматически и не влияет на фактический алгоритм работы.

2) Циркуляционные насосы могут устанавливаться в подающем трубопроводе независимого контура отопления. При этом алгоритм работы регулятора не изменяется.

a) Вариант с управлением двухходовым регулирующим клапаном и циркуляционным насосом в обратном трубопроводе зависимого контура отопления (минимально-допустимый набор оборудования)

б) Вариант с управлением двухходовым регулирующим клапаном и двумя циркуляционными насосами в обратном трубопроводе зависимого контура отопления (максимальный набор оборудования)

Примечания:

1) Отсутствие любого элемента схемы, за исключением минимальнодопустимого набора оборудования, учитывается регулятором автоматически и не влияет на фактический алгоритм работы.

2) Циркуляционные насосы могут устанавливаться в подающем трубопроводе зависимого контура отопления. При этом алгоритм работы регулятора не изменяется.

a) Вариант с управлением трёхходовым регулирующим клапаном и циркуляционным насосом в обратном трубопроводе зависимого контура отопления (минимально-допустимый набор оборудования)

б) Вариант с управлением трёхходовым регулирующим клапаном и двумя циркуляционными насосами в обратном трубопроводе зависимого контура отопления (максимальный набор оборудования)

Примечания:

1) Отсутствие любого элемента схемы, за исключением минимальнодопустимого набора оборудования, учитывается регулятором автоматически и не влияет на фактический алгоритм работы.

2) Циркуляционные насосы могут устанавливаться в подающем трубопроводе зависимого контура отопления. При этом алгоритм работы регулятора не изменяется.

Схема «Подпитка»

а) Вариант схемы поддержания требуемого давления в линии подпитки без повысительных насосов

б) Вариант схемы с повысительными насосами

Рисунок А.7

Условные обозначения на рисунках А.1-А.7 приведены в таблице А.1.

Таблиц	1a A.1
	Условные обозначения
Тнар	Датчик температуры наружного воздуха
Тобр	Датчик температуры обратного трубопровода
Тконт	Датчик контрольной температуры
Тсм	Датчик температуры смеси
Тгв	Датчик температуры горячей воды
М	Электропривод регулирующего клапана
H1	Основной циркуляционный или подмешивающий насос
H2	Резервный циркуляционный насос или подмешивающий насос (может не применяться)
ПH1	Основной повысительный насос
ПН2	Резервный повысительный насос (может не применяться)
MC-2	Модуль сопряжения (преобразователь сигнала 4-20 мА в цифровой код)
Р	Цифровой датчик давления с выходным сигналом 4-20 мА
МЭ	Манометр электроконтактный

Пример реализации схемы регулирования «ГВС» (контур 1) + «Подпитка» (контур 2)

б) Схема подпитки без повысительных насосов

Рисунок А.8

Пример реализации схемы регулирования «Отопление» (контур 1) + «Подпитка» (контур 2)

а) Схема подпитки с повысительными насосами

б) Схема подпитки без повысительных насосов

Приложение Б

Рисунок Б.1 Схема электрическая подключений регулятора с цифровыми термодатчиками

Схема электрическая подключений цифрового термодатчика по трехпроводной линии связи

Рисунок Б.2

Установка и подключение термодатчиков в зависимости от выбранной схемы регулирования производится в соответствии с таблицей Б.1.

Таблица Б.1									
	Схема	Термодачик							
		1	2	3	4				
Измеряемые температуры	ГВС (приложение А рисунок А.1)	Тгв	Тнар	Тобр	Тконт				
	Отопление (приложение A рисун- ки A.2–A.4)	Тнар	Тсм	Тобр	Тконт				

Рисунок Б.3 Схема электрическая подключений регулятора с ТСП

Приложение В Внешний вид блока управления

	159,5			57,5 48 32,5
Контур 1 +V T1 T2 T3 T4 ⊥ P1 P2 ⊥	Контур 2 +V T1 T2 T3 T4 ⊥ P1 P2 ⊥	RS-485 BblX 010 B A+ B- 1+ ⊥	Å	
ЭС	КО-РТ-2Д -2308 50 Га гор	РАБОТА АВАРИЯ	90,2	
KOHTYP 1 PEJE1 PEJE2 PEJE3 PEJE4	КОНТУР 2 РЕЛЕ1 РЕЛЕ2 РЕЛЕ3 РЕЛЕ4	~ 230 B N L		
0000000000	0000000000	000000000	ų.	

Рисунок В.1

Приложение Г

Установка термодатчика на трубопровод

Рекомендуемый вариант установки термодатчика наружного воздуха

Отверстия для крепления к наружной стене здания

Приложение Д

Порядок установки и корректировки графиков работы регулятора

Графики работы регулятора могут устанавливаться и корректироваться двумя способами: 1) при помощи сервисной программы с ПК, подключенного к блоку управления, 2) с клавиатуры блока управления в соответствующем меню режима «Конфигурация» (рисунок 6). Алгоритм установки графиков с ПК приведен в описании сервисного программного обеспечения. Порядок установки и корректировки графиков работы приведен ниже.

Выбор корректируемого значения производится с помощью кнопки « [◀] » путем установки над ним курсора «v», а циклическое изменение значения производится кнопкой « [▶] ».

Назначение позиций меню:

1) День недели;

Час суток;

3) Нормируемое (заданное) значение температуры;

4) К – запись нормируемого значения от заданного часа и до конца суток;

5) Ч – запись нормируемого значения в заданный час каждого дня недели;

6) Г - записать во весь график.

Алгоритм установки графиков регулирования, реализованный в блоке управления, позволяет добиваться одного и того же результата разными методами. Ниже приведены два варианта последовательности выполняемых операций при установке одного и того же графика регулирования.

Вариант 1– Последовательность выполняемых операций оптимизирована с точки зрения уменьшения трудоемкости при установке графика регулирования. Но освоение алгоритма установки графика по варианту 1 требует некоторых усилий при первом ознакомлении с настоящим РЭ и регулятором.

Вариант 2– При внешней простоте требует больших потерь времени при установке графика, т.к. объем выполняемых операций возрастает.

Пример:

Необходимо в рабочие дни недели с 7 до 18ч работать по графику 20°С, а в выходные и оставшееся время по графику 16°С. При этом в пятницу на график 16°С необходимо переходить с 14 ч.

Вариант 1

При входе в меню установки графика (если ранее график не устанавливался) на ЖКИ блока управления выводится следующая информация:

Кнопкой « ⁴ » необходимо перевести «∨» к позиции температуры и установить кноп-кой « [▶] » 16°:

>		V				
Bc	00	16°	К	Ч	Г	

									-					
Часы	0	1	2	3	4	5	6	7	8	 19	20	21	22	23
Вс	16	18	18	18	18	18	18	18	18	 18	18	18	18	18
Пн	18	18	18	18	18	18	18	18	18	 18	18	18	18	18
Вт	18	18	18	18	18	18	18	18	18	 18	18	18	18	18
Ср	18	18	18	18	18	18	18	18	18	 18	18	18	18	18
Чт	18	18	18	18	18	18	18	18	18	 18	18	18	18	18
Пт	18	18	18	18	18	18	18	18	18	 18	18	18	18	18
Сб	18	18	18	18	18	18	18	18	18	 18	18	18	18	18

Примечание— Здесь и далее в таблицах приводятся значения температур для часов суток каждого дня недели, которые устанавливаются в графике после выполнения очередной операции.

Далее кнопкой « ◀ » необходимо перевести «∨» к позиции Г и записать кнопкой « ▶ » это значение для всего графика:

Часы	0	1	2	3	4	5	6	7	8	 19	20	21	22	23
Вс	16	16	16	16	16	16	16	16	16	16	16	16	16	16
Сб	16	16	16	16	16	16	16	16	16	 16	16	16	16	16

Далее с помощью курсора «∨» (кнопка « ⁴ ») и кнопки « [▶] » необходимо последовательно установить день недели на понедельник (Пн), час на 7, температуру 20°С и, перейдя к позиции «К», записать до конца суток (нажав на кнопку « [▶] ») :

>			v			
Пн	07	20 °	К	Ч	Г	

Часы	0	1	2	3	4	5	6	7	8	 19	20	21	22	23
Вс	16	16	16	16	16	16	16	16	16	16	16	16	16	16
Пн	16	16	16	16	16	16	16	20	20	20	20	20	20	20
		•								 				
Сб	16	16	16	16	16	16	16	16	16	 16	16	16	16	16

Часы	0	1	2	3	4	5	6	7	8		19	20	21	22	23
Bc	16	16	16	16	16	16	16	20	16		16	16	16	16	16
Пн	16	16	16	16	16	16	16	20	20		20	20	20	20	20
											• • •		• • •		•
Сб	16	16	16	16	16	16	16	20	16	; ; 	16	16	16	16	16

Далее, не меняя часа, а, изменяя день недели и устанавливая «К», записать по пятницу (Пт) включительно:

> Пт 07 20°КЧГ

Часы	0	1	2	3	4	5	6	7	8	 19	20	21	22	23
Вс	16	16	16	16	16	16	16	20	16	16	16	16	16	16
Пн	16	16	16	16	16	16	16	20	20	20	20	20	20	20
Пт	16	16	16	16	16	16	16	20	20	20	20	20	20	20

Далее изменить час на 14, температуру на 16 и по «К» записать:

>	∨
Пт 14 16°	КЧГ

Часы	0	1	2	3	 14	15	16	17	18	19	20	21	22	23
Вс	16	16	16	16	20	16	16	16	16	16	16	16	16	16
Пн	16	16	16	16	20	20	20	20	20	20	20	20	20	20
	; , ,	+ 	 	+	 			 ! ! !	{ ! ! !	 	i ! ! !	 	i 	+
Пт	16	16	16	16	16	16	16	16	16	16	16	16	16	16
Сб	16	16	16	16	16	16	16	16	16	16	16	16	16	16

Затем изменить час на 18 и по «Ч» записать:

Часы	0	1	2	3		14	15	16	17	18	19	20	21	22	23
Вс	16	16	16	16		16	16	16	16	16	16	16	16	16	16
Пн	16	16	16	16		20	20	20	20	16	20	20	20	20	20
		,	 												
Пт	16	16	16	16	[16	16	16	16	16	16	16	16	16	16
Сб	16	16	16	16		16	16	16	16	16	16	16	16	16	16

Далее, не меняя часа, а изменяя день недели и устанавливая «К» записать по рабочим дням (Пн-Чт):

Часы	0	1	2	3	 14	15	16	17	18	19	20	21	22	23
Вс	16	16	16	16	16	16	16	16	16	16	16	16	16	16
Пн	16	16	16	16	20	20	20	20	16	16	16	16	16	16
Пт	16	16	16	16	16	16	16	16	16	16	16	16	16	16
Сб	16	16	16	16	16	16	16	16	16	16	16	16	16	16

Затем, изменив час на 0, меняя день недели и устанавливая «К» записать в Сб и Вс (суббота и воскресенье):

>			v			
Bc	00	16°	К	Ч	Г	

Часы	0		6	7	8		13	14	15	16	17	18		23
-	Ŭ	i	Ť	•	Ŭ	-:::.							<u>.</u>	
Bc	16		16	16	16	!	: 16	16	16	16	16	16	!	: 16
Пн	16		16	20	20		20	20	20	20	20	16		16
Вт	16		16	20	20		20	20	20	20	20	16		16
Ср	16		16	20	20		20	20	20	20	20	16		16
Чт	16		16	20	20		20	20	20	20	20	16		16
Пт	16		16	20	20		20	16	16	16	16	16		16
Сб	16		16	16	16		16	16	16	16	16	16		16

Вариант 2

При входе в меню установки графика (если ранее график не устанавливался) на ЖКИ блока управления выводится следующая информация:

> >						
Bc	00	18°	К	Ч	Г	

Далее для каждого дня недели устанавливается температурный график согласно требуемым условиям (смотри условие **Примера** стр. 37).

Например, для понедельника должен быть установлен следующий температурный график:

с 0 до 7 ч- необходимо работать по графику 16°С;

с 7 до 18 ч – необходимо работать по графику 20°С;

с 18 по 23 ч(включительно) – необходимо работать по графику 16°С;

Для этого сначала, с помощью курсора «∨» (кнопка « ⁴ ») и кнопки « [▶] » необходимо последовательно установить день недели на понедельник (Пн), час на 00, температуру 16°С и, перейдя к позиции «К», записать до конца суток (нажав на кнопку « [▶] ») :

_____ Пн 00 16° К Ч Г

часы	0	1	2	3	4	5	6	7	8	 19	20	21	22	23
Пн	16	16	16	16	16	16	16	16	16	16	16	16	16	16

Далее, с помощью курсора «v» (кнопка « \checkmark ») и кнопки « \blacktriangleright » необходимо установить час на 07, температуру 20°С и, перейдя к позиции «К», записать до конца суток (нажав на кнопку « \blacktriangleright ») :

>		v		
Пн 0	7 20°	КЧ	Г	

Часы	0	1	2	3	4	5	6	7	8	 19	20	21	22	23
Пн	16	16	16	16	16	16	16	20	20	20	20	20	20	20

Затем, с помощью курсора «v» (кнопка « \checkmark ») и кнопки « \triangleright » необходимо установить час на 18, температуру 16°С и, перейдя к позиции «К», записать до конца суток (нажав на кнопку « \triangleright ») :

> ∨ Пн 18 16°КЧГ

Часы	0	1	2	3	 14	15	16	17	18	19	20	21	22	23
Пн	16	16	16	16	20	20	20	20	16	16	16	16	16	16

Аналогично устанавливают температурные графики (в соответствии с требуемыми условиями) и для всех остальных дней недели.